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Problem setup

Setup: data (Y,X,Z) from some joint distribution.

• Y a outcome variable of interest (AKA response or dependent variable),

• X a explanatory variable of interest (AKA treatment, covariate, feature)

• Z := (Z1, · · · , Zp) a set of p further variables (AKA confounders, nuisance variables)

Examples:
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Motivation

Question 1

Is the variable X important or not?

Figure: Select important groups of SNPs
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Motivation

Q1: A desirable measure of variable importance (MOVI) (of the covariate X) should be

Null-compatible : zero when Y ⊥⊥ X | Z.

Sensitive : able to detect all interesting types of dependence.

Interpretable : simple functional of the data-generating distribution.

Q2: A desirable inferential procedure for the MOVI should be

Valid General Accurate Robust
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Related work

• Parametric approaches: Bühlmann et al. (2013), Zhang and Zhang (2014), Javanmard

and Montanari (2014), Bühlmann et al. (2015), Dezeure et al. (2017), Zhang and Cheng
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(2011); Robins et al. (2017); Newey and Robins (2018), Shah and Peters (2018).

• Random estimands: Lei et al. (2018), Watson and Wright (2019), Rinaldo et al. (2019).
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• Parametric approaches: Bühlmann et al. (2013), Zhang and Zhang (2014), Javanmard
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and Montanari (2014), Bühlmann et al. (2015), Dezeure et al. (2017), Zhang and Cheng

(2017), Van de Geer et al. (2014), Nickl et al. (2013).

• Projection approaches: Buja et al. (2015, 2019a,b), Rinaldo et al. (2019), Lee et al.

(2016), Taylor et al. (2014), Berk et al. (2013), Buja and Brown (2014).

• Semi-parametric approaches: E [Cov (Y,X |Z)]; Robins et al. (2008, 2009); Li et al.

(2011); Robins et al. (2017); Newey and Robins (2018), Shah and Peters (2018).

• Random estimands: Lei et al. (2018), Watson and Wright (2019), Rinaldo et al. (2019).

• Same MOVI as us: Saltelli et al. (2008), Williamson et al. (2017, 2020).

9 / 47



Related work
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and Montanari (2014), Bühlmann et al. (2015), Dezeure et al. (2017), Zhang and Cheng

(2017), Van de Geer et al. (2014), Nickl et al. (2013).

• Projection approaches: Buja et al. (2015, 2019a,b), Rinaldo et al. (2019), Lee et al.

(2016), Taylor et al. (2014), Berk et al. (2013), Buja and Brown (2014).

• Semi-parametric approaches: E [Cov (Y,X |Z)]; Robins et al. (2008, 2009); Li et al.

(2011); Robins et al. (2017); Newey and Robins (2018), Shah and Peters (2018).

• Random estimands: Lei et al. (2018), Watson and Wright (2019), Rinaldo et al. (2019).

• Same MOVI as us: Saltelli et al. (2008), Williamson et al. (2017, 2020).

9 / 47



Related work
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Preview of our results

A1 : present a MOVI, the mMSE gap.

Null compatible �3 Zero under the conditional independence Y ⊥⊥ X | Z.

Sensitive �3 Strictly positive unless E [Y |X,Z] has no dependence on X at all.

Interpretable �3 Direct predictive, causal and explanatory interpretations.

A2 : propose a method for inference for it: floodgate.

Valid �3 Asymptotically-valid inference.

General �3 Does not make any parametric/smoothness/sparsity assumptions about

Y | X,Z and built around any regression estimator.

Accurate �3 Width of confidence bounds proportional to the predictive performance.

Robust �3 Assume PX|Z known; quantified robustness to misspecification and

extension allowing known up to a parametric model.
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Our target MOVI: the mMSE gap

Definition (mMSE Gap)

The minimum mean squared error (mMSE) gap for variable X is defined as

I2 = E
[
(Y − E [Y |Z])2

]
− E

[
(Y − E [Y |X,Z])2

]
.

I2 = 0 ⇐⇒ E [Y |X,Z]
a.s.
= E [Y |Z]

• Predictive: immediate from above.

• Variance decomposition: I2 = Var (E [Y |X,Z])−Var (E [Y |Z]).

• Causal: I2 = 1
2EZ

[
E
x1,x2

i.i.d.∼ PX|Z

[
(E [Y |X = x1, Z]− E [Y |X = x2, Z])2

]]
.

• Compact form: I2 = E [Var (E [Y |X,Z] |Z)].
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How to do inference on I ?

True regression function µ?(x, z) := E [Y |X = x, Z = z]

⇒ I2 = E [Var(µ?(X,Z) |Z)] = E
[
(µ?(X,Z)− E [µ?(X,Z) |Z])2

]
Challenges:
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How to do inference on I ?

Possible solution: assume we have a good estimator µ of µ??

• Only known for limited class of estimators and data-generating distributions.

• Precludes most modern machine learning algorithms and methods that integrate

hard-to-quantify domain knowledge.

Bayesian Regression
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Floodgate

Our approach: construct a lower confidence bound

(LCB) for I via floodgate, i.e.

P1 construct a functional f such that

f (µ) ≤ I for any µ.

P2 know how to obtain LCB L(µ) of f (µ) for any µ.

P3 (Ideally) the functional f also satisfies f (µ?) = I.
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Our choice of Floodgate functional

• Our choice:

f(µ) :=
E [Cov(µ?(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]

P1

�3

P2

�3

P3

�3

Lemma (Zhang and Janson (2020))

For any µ such that f(µ) exists, we have f(µ) ≤ I and f(µ?) = I.

• How to obtain LCB L(µ) of f(µ) for any µ?

f(µ) =
E
[
Y
(
µ(X,Z)− E [µ(X,Z) |Z]

)]√
E [Var (µ(X,Z) |Z)]

=
a linear functional of P(Y,X,Z)√

a linear functional of PZ
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Inferential procedures

Input: D = {(Yi, Xi, Zi)}ni=1; D′; any regression algorithm A; assume PX|Z known.

1. Obtain µ = A(D′) from the separate dataset D′.
2. Compute E [µ(X,Z) |Z] ,Var (µ(X,Z) |Z).

3. Construct CLT-based LCB for f(µ): Lαn(µ) (with confidence level α) by Delta method.(
1
n

∑n
i=1 Yi

(
µ(Xi, Zi)− E [µ(Xi, Zi) |Zi]

)
1
n

∑n
i=1 Var (µ(Xi, Zi) |Zi)

)
asympt. N−→

(
E [Cov(µ?(X,Z), µ(X,Z) |Z)]

E [Var(µ(X,Z) |Z)]

)
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Asymptotic validity

Theorem (Zhang and Janson (2020); informal)

Under mild moment conditions on Y and µ(X,Z), we have

P (Lαn(µ) ≤ I) ≥ 1− α−O(n−1/2).

• Point-wise result: the convergence rate result builds on recent Berry–Esseen type bounds

for Delta method (Pinelis et al., 2016).

• Constant in O(n−1/2) has complicated dependence on µ and P(Y,X,Z).

• Invariance of the floodgate procedure: e.g., µ(x, z) = ax+ g(z), constant only depends

on sign(a) and bivariate distribution of

(
Y, X−E[X |Z]√

Var(X−E[X |Z])

)
.
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Computation

Bayesian Regression

• Allow the user to choose machine learning algorithms or integrate domain knowledge.

• Only involve one time of model fitting.

• Under certain fitted models, can compute E [µ(X,Z) |Z] ,Var (µ(X,Z) |Z) analytically,

e.g., partial linear model with Gaussian design.
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General computation

How to compute E [µ(X,Z) |Z] ,Var (µ(X,Z) |Z) in a general way (e.g., µ is fitted based on

random forest or neural networks)?

• Sample X̃ from PX|Z , conditionally independently of X,Y .
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General computation

XY Z
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General computation

XY X̃(1)Z
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General computation

XY X̃(1)Z X̃(2) X̃(K)⋯
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General computation

XY X̃(1)Z X̃(2) X̃(K)⋯{
μ(X, Z)
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General computation
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General computation
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General computation

XY X̃(1)Z X̃(2) X̃(K)⋯{ {
μ(X, Z) μ(X̃(1), Z) μ(X̃(2), Z) μ(X̃(K), Z)⋯
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General computation

X

Y

X̃(1)Z X̃(2) X̃(K)⋯{ {
μ(X, Z) μ(X̃(1), Z) μ(X̃(2), Z) μ(X̃(K), Z)⋯

Floodgate
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General computation

How to compute E [µ(X,Z) |Z] ,Var (µ(X,Z) |Z) in a general way (e.g., µ is fitted based on

random forest or neural networks)?

• Sample X̃ from PX|Z , conditionally independently of X,Y .

• We know

E
[
Y (µ(X,Z)− µ(X̃, Z)

]
= E

[
Y
(
µ(X,Z)− E [µ(X,Z) |Z]

)]
1

2
E
[(
µ(X,Z)− µ(X̃, Z)

)2]
= E [Var(µ(X,Z) |Z)]
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Upper confidence bound

Suppose there were no Z.

• I2 = Var (E [Y |X]).

• Var (Y ) is a trivial UCB, as I2 ≤ Var (Y ).

Theorem (Zhang and Janson (2020); informal)

Under our assumptions, any asymptotically-valid UCBα will asymptotically be ≥ Var (Y ) with

probability at least 1− α.

Valid, nontrivial UCB impossible without structure on Y | X.
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Intuition behind the UCB result
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Figure: Left: Y = X +N (0, 0.1); Right: Y ∼ N (0, 0.1).
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Statistical accuracy

Floodgate procedure is invariant with respect to a “equivalent” function class of µ,

Sµ = {cµ(x, z) + g(z) : c > 0, g : Rp → R}.

• If the true model is partial linear: µ?(x, z) = a?x+ g?(z), only need to know sign(a?).

Theorem (Zhang and Janson (2020); informal)

Under mild moment conditions on Y and noises, for µn with well-behaved moments,

I − Lαn(µn) = Op

(
inf

µ∈Sµn
E
[
(µ(X,Z)− µ?(X,Z))2

]
+ n−1/2

)
.
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)
.

Floodgate is adaptive to the accuracy of µn

(through the MSE of the best element of its equivalence class Sµn)
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Robustness

Suppose PX|Z unknown, we instead use its estimate Q
(n)
X|Z to run floodgate.

Theorem (Zhang and Janson (2020); informal)

Under moment conditions on Y and noises, for µn with well-behaved moments under both the

true distribution P and the specified one Q(n), then for floodgate with Q
(n)
X|Z we have

P (Lαn(µn) ≤ I + ∆n) ≥ 1− α−O(n−1/2),

where

∆n ≤

c1

√
E
[
χ2
(
PX|Z ||Q(n)

X|Z

)]
− c2 E

[
(µ̄n(X,Z)− µ?(X,Z))2

]
where µ̄n is a particular representative of Sµn and χ2(· || ·) denotes the χ2 divergence.
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Floodgate is robust if PX|Z well-estimated.

If I > 0, floodgate is robust if PX|Z better-estimated than E [Y |X,Z].
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Simulation setup

• n = 1100, p = 1000, and a sparsity of 30 unless stated otherwise.

• Linear: X ∼ N (0,Σ), AR(1); Y = Xβ +N (0, 1), ||β||0 = 30, |βj | ∈ {0, amplitude√
n
}.

• Nonlinear: each component chosen from below; up to 3rd order interactions.

sin(πx), cos(πx), sin(πx/2), cos(πx)I(x > 0), x sin(πx), x, |x|, x2, x3, ex − 1.

• Number of replicates: 64.

• Default sample splitting proportion: 0.50.

• Four fitting algorithms: LASSO, Ridge, SAM, Random Forest.

• Number of null samples: K = 500.
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Covariate dimension
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Robustness

●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●●

0.80

0.85

0.90

0.95

1.00

300 600 900
Number of samples used to estimate PX|Z

C
ov

er
ag

e

Null variables

●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

0.80

0.85

0.90

0.95

1.00

300 600 900
Number of samples used to estimate PX|Z

C
ov

er
ag

e

Non−null variables

Model−X

glasso
true

Legend
●

●

●

●

LASSO
Random Forest
Ridge
SAM

Figure: Linear setting.

41 / 47



Robustness

●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●● ●

●

●●●

●

●●

0.80

0.85

0.90

0.95

1.00

300 600 900
Number of samples used to estimate PX|Z

C
ov

er
ag

e

Null variables
●●●●
●●
●

●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●●●
●●●●●●●●

●●●●●●
●
●

●●●●●●
●
●

●●●●●●●●
●●●●●●●
●

●●●●●●●●

0.80

0.85

0.90

0.95

1.00

300 600 900
Number of samples used to estimate PX|Z

C
ov

er
ag

e

Non−null variables

Model−X

glasso
true

Legend
●

●

●

●

LASSO
Random Forest
Ridge
SAM

Figure: Nonlinear setting.

42 / 47



Genomic study of platelet count
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Figure: Colored Chicago plot (Sesia et al., 2020) with the color of each point representing the floodgate LCB for

the importance of a group of SNPs on Chromosome 12 in the UK Biobank data at different resolutions (y-axis).

Bottom plot shows a zoomed-in region of strong importance.
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Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Extensions

Questions Answers

What if only know a model for PX|Z? �3 Co-sufficient floodgate.

Beyond the mMSE gap? �3 Floodgate for MACM gap.

Inferring the MOVI w.r.t {Xj}j∈G? �3 Easily extends.

Transporting inference from P(X,Z) to Q(X,Z)? �3 Easily extends.

Adjusting for multiplicity and selection effects? �3 Has answers.

Inferring the normalized mMSE gap I√
Var(Y )

? �3 Easily extends.

45 / 47



Summary

Floodgate

I
f (μ)

μ

L(μ)

Floodgate: a new inferential approach for

variable importance.

• Focus on an interpretable, sensitive and

model-free MOVI: the mMSE gap.

• Provide valid and robust LCBs for the

mMSE gap.

• Allow flexible regression algorithms, and is

adaptive to the MSE.
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Discussion: beyond this paper

Floodgate
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μ

L(μ)

Floodgate: a new inferential approach for

variable importance, , , , , , ?

• How to characterize a class of feasible

model-free targets?

• How to construct floodgate functional f?

• How to obtain LCBs for f(·) under

reasonable conditions?
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MACM gap

Definition (Mean absolute conditional mean gap)

The mean absolute conditional mean (MACM) gap for variable X is defined as

I`1 = E [|E [Y |Z]− E [Y |X,Z]|]

whenever all the above expectations exist.

The subscript in I`1 reflects its similarity to I2 = E
[
(E [Y |Z]− E [Y |X,Z])2

]
except with

the square replaced by the absolute value (also known as the `1 norm).
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Figure: Linear setting.
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Sample size
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