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Abstract

Many modern applications seek to understand the relationship between an outcome variable Y and
a covariate X in the presence of a (possibly high-dimensional) confounding variable Z. Although much
attention has been paid to testing whether Y depends on X given Z, in this paper we seek to go beyond
testing by inferring the strength of that dependence. We first define our estimand, the minimum mean
squared error (mMSE) gap, which quantifies the conditional relationship between Y and X in a way
that is deterministic, model-free, interpretable, and sensitive to nonlinearities and interactions. We then
propose a new inferential approach called floodgate that can leverage any working regression function
chosen by the user (allowing, e.g., it to be fitted by a state-of-the-art machine learning algorithm or be
derived from qualitative domain knowledge) to construct asymptotic confidence bounds, and we apply
it to the mMSE gap. In addition to proving floodgate’s asymptotic validity, we rigorously quantify its
accuracy (distance from confidence bound to estimand) and robustness. We demonstrate floodgate’s
performance in a series of simulations and apply it to data from the UK Biobank to infer the strengths
of dependence of platelet count on various groups of genetic mutations.

Keywords. Variable importance, effect size, model-X, heterogeneous treatment effects, heritability.

1 Introduction

1.1 Problem Statement

Scientists looking to better-understand the relationship between a response variable Y of interest and
a covariate X in the presence of confounding variables Z = (Z1, . . . , Zp−1) often start by asking how
important X is in this relationship. Although this question is sometimes simplified by statisticians to the
binary question of ‘is X important or not?’, a more informative and useful inferential goal is to provide
inference (i.e., confidence bounds) for an interpretable real-valued measure of variable importance (MOVI).
The canonical approach of assuming a parametric model for Y | X,Z will usually provide obvious MOVI
candidates in terms of the model parameters, but the simple models for which it is known how to construct
confidence intervals (e.g., low-dimensional or ultra-sparse generalized linear models) often provide at best
very coarse approximations to the true Y | X,Z (as evidenced by the marked predictive outperformance
of nonparametric machine learning methods in many domains), resulting in undercoverage due to violated
assumptions and lost power due to insufficient capacity to capture complex relationships. This raises the
motivating question for this paper: what is an interpretable, sensitive, and model-free measure
of variable importance and how can we provide valid and narrow confidence bounds for it?

1.2 Our contribution

The main contribution of this paper is to introduce floodgate, a method for inference of the minimum mean
squared error (mMSE) gap, which satisfies the following high-level objectives which we believe are fairly
universal for the task at hand.
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(Sensitivity) The mMSE gap is strictly positive unless E [Y |X,Z]
a.s.
= E [Y |Z], and is large when-

ever X explains a lot of the variance in Y not already explained by Z alone, making
it sensitive to arbitrary nonlinearities and interactions in Y ’s relationship with X.

(Interpretability) The mMSE gap has simple predictive, explanatory, and causal interpretations for Y ’s
relationship with X, is a functional of only the joint distribution of (Y,X,Z), and is
exactly zero when Y ⊥⊥ X | Z.

(Validity) Floodgate is asymptotically valid under extremely mild moment conditions, and in
particular requires no smoothness, sparsity, or other constraints on E [Y |X,Z] that
would ensure its learnability at any geometric rate. Floodgate requires the user to
know the distribution of X | Z, although we prove this requirement can sometimes
be relaxed to only knowing a model for X | Z, and we theoretically and numerically
characterize floodgate’s robustness to misspecification of this distribution.

(Accuracy) Floodgate derives accuracy from flexibility by allowing the user to estimate E [Y |X,Z]
in whatever way they like, and we prove that the accuracy of inference is adaptive to
the mean squared error (MSE) of that estimate.

In a bit more detail, we (in Section 2) define the mMSE gap as an interpretable and model-free MOVI
(Section 2.1) and present a method, floodgate, to construct asymptotic confidence bounds for it that
provides the user absolute latitude to leverage any domain knowledge or advanced machine learning algo-
rithms to make those bounds as tight as possible (Section 2.2). We address computational considerations
(Section 2.3), theoretically characterize the width of floodgate’s confidence bounds (Section 2.4) and its
robustness to model misspecification (Section 2.5), and briefly address some immediate generalizations
(Section 2.6).

We then proceed to extensions of floodgate (Section 3), first presenting an alternative MOVI that we
can similarly construct asymptotic confidence bounds for when Y is binary (Section 3.1). Second, we
present a modification of floodgate that, for certain models, allows asymptotic inference even when X’s
distribution is only known up to a parametric model (Section 3.2).

Finally we demonstrate floodgate’s performance and support our theory with simulations (Section 4)
and an application to data from the UK Biobank (Section 5). We end with a discussion of the future
research directions opened by this work (Section 6). All proofs are deferred to the appendix.

1.3 Related work

The standard approach to statistical inference in regression is to assume a parametric model for Y |
X,Z, often a generalized linear model (GLM) or cousin thereof. With Y | X,Z so parameterized, it
is usually straightforward to define a parametric MOVI and a large body of literature is available to
provide asymptotic inference for such parametric MOVIs (see, for example, Bühlmann et al. (2013); Nickl
et al. (2013); Zhang and Zhang (2014); Van de Geer et al. (2014); Javanmard and Montanari (2014);
Bühlmann et al. (2015); Dezeure et al. (2017); Zhang and Cheng (2017)). However, when the parametric
Y | X,Z model is misspecified even slightly, the associated parametric MOVI becomes ill-defined, reducing
its interpretability. Furthermore, many Y | X,Z models are too simple to capture or detect nonlinearities
that may be present in real-world data sets.

One approach to addressing the shortcomings of parametric inference is to generalize the parameters of
common parametric models to be well-defined in a much larger nonparametric model class. For example,
under mild moment conditions one can generalize the parameters in a linear model for Y | X,Z as
parameters in the least-squares projection to a linear model of any Y | X,Z distribution (Berk et al.,
2013; Taylor et al., 2014; Buja and Brown, 2014; Buja et al., 2015; Rinaldo et al., 2019; Lee et al., 2016;
Buja et al., 2019a,b). Such a linear projection MOVI can be hard to interpret because it will in general
have a non-zero value even when Y ⊥⊥ X | Z; see Appendix B for a simple example. Another example of a
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generalized parameter is the expected conditional covariance functional E [Cov (Y,X |Z)] (see, for example,
Robins et al. (2008, 2009); Li et al. (2011); Robins et al. (2017); Newey and Robins (2018); Shah and Peters
(2020); Chernozhukov et al. (2018); Liu et al. (2019); Katsevich and Ramdas (2020)), which represents
a generalization of the linear coefficient in a partially linear model. E [Cov (Y,X |Z)] always equals zero
when Y ⊥⊥ X | Z, but it shares the shortcoming of linear projection MOVIs that it lacks sensitivity to
capture nonlinearities or interactions in Y ’s relationship with X. That is, both MOVIs mentioned in this
paragraph will assign any non-null variable that influences Y nonlinearly or through interactions with
other covariates a value that can severely underrate that variable’s true importance, and can even assign
a variable the MOVI value zero when Y is a deterministic non-constant function of it.

A second approach has been to infer model-free MOVIs defined through machine learning algorithms
fitted to part of the data itself (Lei et al., 2018; Fisher et al., 2019; Watson and Wright, 2019). By
leveraging the expressiveness of machine learning, such a MOVI can be made sensitive to nonlinearities
and interactions but is itself random and depends both on the data and the choice of machine learning
algorithm. This poses a challenge for interpretability and in particular for replicability, since even identical
analyses run on two independent data sets that are identically-distributed will provide inferences for different
MOVI values.

Another line of work (Castro et al., 2009; Štrumbelj and Kononenko, 2014; Owen and Prieur, 2017;
Lundberg et al., 2020; Covert et al., 2020; Williamson and Feng, 2020) considers MOVIs based on the
classical form of the Shapley value (Shapley, 1953; Charnes et al., 1988), which in general assign a non-
zero MOVI value to covariates X with Y ⊥⊥ X | Z, making it hard to interpret its value mechanistically or
causally (though it has some appealing properties for a predictive interpretation).

An interesting new proposal for a model-free MOVI was made in Azadkia and Chatterjee (2019). Their
MOVI has the distinction that it equals zero if and only if Y ⊥⊥ X | Z and it attains the maximum value 1
if Y is almost surely a measurable function of X given Z. However the authors only propose a consistent
estimator for their MOVI and do not provide a method for inference (confidence lower- or upper-bounds).

As we will detail in Section 2.1, the MOVI we provide inference for, the mMSE gap, does not suffer from
the drawbacks of the MOVIs described in the previous paragraphs, and indeed the same MOVI has been
considered before. In the sensitivity analysis literature it is called the “total-effect index” (Saltelli et al.,
2008) but to our knowledge its inference (confidence lower- or upper-bounds) is not considered there. In
one of the Shapley value papers (Covert et al., 2020) a generalization of the mMSE gap is used as the input
to the Shapley value calculation, but again inferential results (for the mMSE gap or its Shapley version)
are not considered in that paper. Otherwise, Williamson et al. (2019) appears to be the first to consider
inference for the mMSE gap (this inference is then used with neural networks in Feng et al. (2018)), but in
order to guarantee asymptotic coverage of their confidence intervals, their theory assumes (i) the mMSE
gap is strictly positive, and (ii) a machine learning method is applied that converges to E [Y |X,Z] at a
op(n

−1/4) rate. A recent extension (Williamson et al., 2020) relaxes requirement (i) through data splitting
though still requires the group mMSE gap of the entire covariate vector to be positive. In contrast, our
inference is valid for any value of the mMSE gap (group or otherwise) and does not assume anything
that would ensure E [Y |X,Z] can be estimated at any geometric rate. Allowing such weak knowledge of
Y | X,Z is critical in the most challenging regression applications where the data and/or domain knowledge
is simply not sufficient to estimate E [Y |X,Z] accurately (or even consistently). Williamson et al. (2020)
provides no guarantees for their method when the op(n

−1/4)-consistency condition is not met, but we found
in numerical experiments that as the estimation accuracy of E [Y |X,Z] degrades, their method tends to
become conservative and provides much less informative inferences than floodgate; see Section 4.4.

1.4 Notation

For two random variables A and B defined on the same probability space, let PA |B denote the conditional
distribution of A | B. Denote the (1 − α)th quantile of the standard normal distribution by zα. Let [n]
denote the set {1, . . . , n}.
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2 Methodology

2.1 Measuring variable importance with the mMSE gap

We begin by defining the MOVI that we will provide inference for in this paper.

Definition 2.1 (Minimum mean squared error gap). The minimum mean squared error (mMSE) gap for
variable X is defined as

I2 = E
[
(Y − E [Y |Z])2

]
− E

[
(Y − E [Y |X,Z])2

]
(2.1)

whenever all the above expectations exist.

We will at times refer to either I2 or I as the mMSE gap when it causes no confusion. Although
the same MOVI has been used before (see Section 1.3), we provide here a number of equivalent defini-
tions/interpretations which we have not seen presented together before.

• Equation (2.1) has a direct predictive interpretation as the increase in the achievable or minimum
MSE for predicting Y when X is removed.

• The mMSE gap can also be interpreted as the decrease in the explainable variance of Y without X:

I2 = Var (E [Y |X,Z])−Var (E [Y |Z]) . (2.2)

• When X is viewed as a treatment level for Y and Z is a set of measured confounders, I can be seen
as an expected squared treatment effect :

I2 =
1

2
Ex1,x2,Z

[
(E [Y |X = x1, Z]− E [Y |X = x2, Z])2

]
. (2.3)

where x1 and x2 are independently drawn from PX|Z in the outer expectation.

• Lastly, we remark that I2 also admits a very compact (if less immediately interpretable) expression:

I2 = E [Var (E [Y |X,Z] |Z)] . (2.4)

In light of these multiple alternative expressions, we find the mMSE gap remarkably interpretable. Note
that it only requires the existence of some low-order conditional and unconditional moments of Y to be
well-defined, and its value is invariant to any fixed translation of Y and to the replacement of X or Z by any
fixed bijective function of itself. Furthermore, the mMSE gap is zero if and only if E [Y |X,Z]

a.s.
= E [Y |Z],

and in particular it is exactly zero when Y ⊥⊥ X | Z and strictly positive if E [Y |X,Z] depends at all on
X, allowing it to fully capture arbitrary nonlinearities and interactions in E [Y |X,Z].

Note that I has the same units as Y , which can help interpretation when Y ’s units are meaningful
(much like it does for the average treatment effect in causal inference). However, if a unitless quantity
is preferred, such as for comparison between MOVIs across Y s with different units, we can also measure
variable importance by and extend our methodology to a standardized version of I2, namely, I2/Var (Y ).
In fact, with just a little more work, we can even extend our inferential results to a version of the mMSE
gap which is invariant to transformations of Y , or a version that is zero if and only if Y ⊥⊥ X | Z; see
Section 2.6 for details.
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2.2 Floodgate: asymptotic lower confidence bounds for the mMSE gap

As can be seen by Equation (2.4), the mMSE gap is a nonlinear functional of the true regression function
µ?(x, z) := E [Y |X = x, Z = z]. Hence if we had a sufficiently-well-behaved estimator µ̂ for µ? (e.g.,
asymptotically normal or consistent at a sufficiently-fast geometric rate), there would be a number of
existing tools in the literature (e.g., the delta method, influence functions) that we could use to provide
inference for the mMSE gap. But such estimation-accuracy assumptions are only known to hold for a very
limited class of regression estimators, and in particular preclude most modern machine learning algorithms
and methods that integrate hard-to-quantify domain knowledge, which are exactly the types of powerful
regression estimators we would most like to leverage for accurate inference!

However, given the centrality of µ? in the definition of the mMSE gap, it seems we need to at least
implicitly estimate it with some working regression function µ. And even if we avoid assumptions on µ’s
accuracy, if we want to provide rigorous inference then we ultimately still need some way to relate µ to I,
which is a function of µ?. We address this issue in the context of constructing a lower confidence bound
(LCB) for the mMSE gap. The key idea proposed in this paper is to use a functional, which we call a
floodgate, to relate any µ to I. In particular, we will shortly introduce a f(µ) such that for any µ,

(a) f(µ) ≤ I

(b) we can construct a lower confidence bound L for f(µ).

Then by construction L will also constitute a valid LCB for I. The term floodgate comes from metaphori-
cally thinking of constructing a LCB as preventing flooding by keeping the water level (L) below a critical
threshold (I) under arbitrary weather/storm conditions (µ). Then by controlling L below I for any µ, f
acts as a floodgate, and we also use the same name for the inference procedure we derive from f .

In particular, for any (nonrandom) function µ : Rp → R, define

f(µ) :=
E [Cov(µ?(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
, (2.5)

where by convention we define 0/0 = 0 so that f(µ) remains well-defined when the denominator of (2.5)
is zero. It is not hard to see that f tightly satisfies the lower-bounding property (a) and we formalize this
in the following lemma which is proved in Appendix A.1.1.

Lemma 2.2. For any µ such that f(µ) exists, f(µ) ≤ I, with equality when µ = µ?.

In order to establish property (b) of f , we first take a model-X approach (Janson, 2017; Candès et al.,
2018): we assume we know PX|Z but avoid assumptions on Y | X,Z. In practice, PX|Z may be (a) known
due to experimental randomization, (b) well-modeled a priori due to domain expertise, or (c) accurately
estimated from a large unlabeled data set. For example, (a) holds in the high-dimensional experiments of
conjoint analysis (Luce and Tukey, 1964; Hainmueller and Hopkins, 2014), (b) holds in the study of the
microbiome where accurate covariate simulators exist (Ren et al., 2016), and a combination of (b) and (c)
hold in genomics, where the model-X framework has been repeatedly and successfully applied for controlled
variable selection (Sesia et al., 2019; Katsevich and Sabatti, 2019; Sesia et al., 2020b; Bates et al., 2020;
Sesia et al., 2020a). We also quantify the robustness of our inferences to this assumption in Section 2.5 and
show it can sometimes be relaxed in Section 3.2, and indeed model-X approaches have shown promising
empirical performance in a number of applications in which it is unclear whether any of (a), (b), or (c)
hold, such as bacterial classification from spectroscopic data (Chia et al., 2020) and single cell regulatory
screening (Katsevich and Roeder, 2020).

Knowing PX|Z and µmeans that, given data {(Xi, Zi, Yi)}ni=1, we also know {Vi := Var(µ(Xi, Zi) |Zi)}ni=1

which are i.i.d. and unbiased for the squared denominator. And if we rewrite the numerator as

E [Cov(µ?(X,Z), µ(X,Z) |Z)] = E
[
Y
(
µ(X,Z)− E [µ(X,Z) |Z]

)]
, (2.6)
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then we see we also know {Ri := Yi
(
µ(Xi, Zi) − E [µ(X,Zi) |Zi]

)
}ni=1 which are i.i.d. and unbiased for

the numerator. Thus for any given µ, we can use sample means of Ri and Vi to asymptotically-normally
estimate both expectations in Equation (2.5), and then combine said estimators through the delta method
to get an estimator of f(µ) whose asymptotic normality facilitates an immediate asymptotic LCB. This
strategy is spelled out in Algorithm 1 and Theorem 2.3 establishes its asymptotic coverage.

Algorithm 1 Floodgate

Input: Data {(Yi, Xi, Zi)}ni=1, PX|Z , a working regression function µ : Rp → R, and a confidence level
α ∈ (0, 1).

Compute Ri = Yi
(
µ(Xi, Zi) − E [µ(Xi, Zi) |Zi]

)
and Vi = Var (µ(Xi, Zi) |Zi) for each i ∈ [n], and their

sample mean (R̄, V̄ ) and sample covariance matrix Σ̂, and compute s2 = 1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
.

Output: Lower confidence bound Lαn(µ) = max
{

R̄√
V̄
− zαs√

n
, 0
}

, with the convention that 0/0 = 0.

Theorem 2.3 (Floodgate validity). For any given working regression function µ : Rp → R and i.i.d. data
{(Yi, Xi, Zi)}ni=1, if E[Y 12], E[µ12(X,Z)] <∞, then Lαn(µ) from Algorithm 1 satisfies

P (Lαn(µ) ≤ I) ≥ 1− α−O(n−1/2).

We note that in both Algorithm 1 and Theorem 2.3, Y can be everywhere replaced by Y −g(Z) for any
non-random function g (e.g., E [µ(X,Z) |Z = z] would be a natural choice), which can reduce the variance
of the Ri terms and hence improve the LCB. The proof of Theorem 2.3 can be found in Appendix A.1.2;
establishing the n−1/2 rate requires relatively recent Berry–Esseen-type results for the delta method (Pinelis
et al., 2016) and also necessitates the existence of 12th moments (lower-order moments would be needed for
just an o(1) rate). Beyond the pointwise n−1/2 consistency of Theorem 2.3, a number of natural questions
arise, such as floodgate’s performance in high dimensions, that could benefit from a clearer exposition of
the constant in the O(n−1/2). First we note that in the simulations we conduct in Section 4.3, we do not
find that floodgate’s coverage is affected at all by dimensionality. Unfortunately however, it is hard to make
more rigorous statements because the constant in the O(n−1/2) depends on µ and the data distribution in
a rather complicated way. Although in principle that dependence can be deduced from careful review of
the proof, we find it more illuminating to examine invariances in the floodgate procedure. In particular,
floodgate (both f and Algorithm 1) is invariant to two aspects of µ:

(i) floodgate is invariant to any additive term in µ that depends only on Z,

(ii) floodgate is invariant to any positive global constant multiplying µ.

This means that everything about floodgate remains identical if µ is replaced by any member of the
set Sµ = {cµ(·, ·) + g(·, ·) : c > 0, g(x, ·) = g(x′, ·)∀x, x′}. An immediate consequence is that if µ is
a partially linear model in X, i.e., µ(x, z) = cx + g(z) for some c and g, then floodgate only depends
on µ through the sign of c, making floodgate particularly forgiving for partially linear models. To be
precise, floodgate using µ(x, z) = cx + g(z) will perform identically to floodgate using the best partially
linear approximation to µ? as long as c has the same sign as the coefficient in that best approximation
(regardless of c’s magnitude or anything about g), and hence for a fixed data distribution, the convergence
of floodgate’s coverage is uniform over all partially-linear µ. Furthermore, it also turns out that when µ
is partially linear, floodgate only depends on the data distribution through the bivariate distribution of
(Y,X ′), where X ′ := (X − E [X |Z])/

√
Var (X − E [X |Z]) is the conditionally standardized version of X.

Hence as the data-generating distribution varies, even if Z’s dimension increases, as long as (Y,X ′) remains
well-behaved (uniformly bounded higher moments and Var (Y X ′) bounded below by a positive constant)
the convergence of floodgate’s coverage will still be uniform over partially-linear µ.
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The final missing piece in our LCB procedure is the choice of µ, and this is where the flexibility of our
procedure thus far finally pays off: µ can be chosen in any way that does not depend on the data used
for inference. Normally we expect this to be achieved through data-splitting, i.e., a set of data samples is
divided into two independent parts, and one part is used to produce an estimate µ of µ? while floodgate
is applied to the other part with input µ; we will explore this strategy in simulations in Section 4. But
in general, µ can be derived from any independent source, including mechanistic models or data of a
completely different type than that used in floodgate (see, for example, Bates et al. (2020) for an example
of using a regression model fitted to a separate data set in the context of variable selection). The goal is
to allow the user as much latitude as possible in choosing µ so that they can leverage every tool at their
disposal, including modern machine learning algorithms and qualitative domain knowledge, to get as close
to µ? as possible. We show in Section 2.4 that there is a direct relationship between the accuracy of µ and
the accuracy of the resulting floodgate LCB.

Before continuing our study of floodgate LCBs, we first pause to address a natural question: what about
an upper confidence bound (UCB)? Unfortunately it is impossible to do something analogous for a UCB,
in the sense that to get a non-trivial UCB one needs to assume some sort of structure on Y | X,Z, such
as smoothness or sparsity, that allow it to be estimated at a guaranteed rate; see Appendix C for a formal
impossibility statement and proof. In particular, the assumed structure of Y | X,Z must be incorporated
into the UCB procedure itself to attain nontrivial results, in stark contrast to floodgate which requires no
information about Y | X,Z and can certainly produce nontrivial LCBs and even achieve the parametric rate
with sufficiently-accurate µ; see Section 2.4. Although it is disappointing that further assumptions would
be needed for a UCB, we envision MOVI inference predominantly being used to quantify new important
relationships, in which case we expect it to be more useful to know a variable is at least as important as
some LCB than to upper-bound its importance with a UCB.

2.3 Computation

Astute readers may have noticed that the quantities Ri and Vi in Algorithm 1 involve conditional ex-
pectations/variances which, though in principle known due to our assumed knowledge of PX|Z , may be
quite hard to compute in practice. In certain cases these conditional expectations can have simple or even
closed-form expressions, such as when µ is a generalized linear model and X | Z is Gaussian, but otherwise
a more general approach is needed. Monte Carlo provides a natural solution: assume that we can sample

K copies X̃
(k)
i of Xi from PXi|Zi conditionally independently of Xi and Yi and thus replace Ri and Vi,

respectively, by the sample estimators

RKi = Yi

(
µ(Xi, Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)
, V K

i =
1

K − 1

K∑
k=1

(
µ(X̃

(k)
i , Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)2

.

Luckily the same guarantees hold for the Monte Carlo analogue of floodgate, even for fixed K.

Theorem 2.4. Under the conditions of Theorem 2.3 and E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0,
for any given K > 1, Lαn,K(µ) computed by replacing Ri and Vi with RKi and V K

i , respectively, in Algorithm
1 satisfies

inf
K>1

P
(
Lαn,K(µ) ≤ I

)
≥ 1− α−O(n−1/2).

The proof can be found in Appendix A.2. Note that the additional assumption beyond Theorem 2.3
of E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0 is only needed for n−1/2-rate coverage validity uniformly
over K > 1, and could be removed for the same result for any fixed K > 1. In general we expect larger
values of K to produce more accurate LCBs, but we found the difference between K = 2 and K = ∞ to
be surprisingly small and, of course, it will always be computationally faster to use smaller K.
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2.4 Accuracy adaptivity to µ’s mean squared error

Having established floodgate’s validity and computational tractability, the natural next question is: how
accurate is it, i.e., how close is the LCB to the mMSE gap? The answer depends on the accuracy of µ—the
better that µ approximates µ?, the more accurate the floodgate LCB is, as formalized in the following
theorem.

Theorem 2.5 (Floodgate accuracy and adaptivity). For i.i.d. data {(Yi, Xi, Zi)}ni=1 such that E[Y 8] <∞,
Var (Y |X,Z) ≥ τ a.s. for some τ > 0, and a sequence of working regression functions µn : Rp → R
such that for some C and all n either E [Var (µn(X,Z) |Z)] = 0 or

E[µ8n(X,Z)]
E[Var(µn(X,Z) |Z)]4

≤ C, the output of

Algorithm 1 satisfies

I − Lαn(µn) = Op

(
inf

µ∈Sµn
E
[
(µ(X,Z)− µ?(X,Z))2

]
+ n−1/2

)
(2.7)

The proof can be found in Appendix A.3. We call the left-hand side of Equation (2.7) the half-
width (by analogy with the width that would measure the accuracy of a two-sided confidence interval)
and Theorem 2.5 shows it is adaptive to the accuracy of µn through the MSE of the best element of its
equivalence class Sµn , up to a limit of the parametric or central limit theorem rate of n−1/2. So in principle
floodgate can achieve n−1/2 accuracy if a member of Sµn converges very quickly to µ?, but in general
floodgate’s accuracy decays gracefully with µn’s accuracy. We reiterate that the infimum in Equation (2.7)
means that floodgate is self-correcting with respect to µn’s conditional mean given Z (through invariance
(i)) and global scale (through invariance (ii)).

2.5 Robustness

We now consider what happens when the distribution used in floodgate is not the true PX|Z but an
approximation QX|Z . Notationally, let Q = PY |X,Z ×QX|Z ×PZ (we need not consider misspecification in

the distributions of Z or Y | X,Z since these are not inputs to floodgate), and let fQ be an analogue of
f with certain expectations replaced by expectations over Q (we will denote such expectations by EQ [·]);
see Equation (A.67) for a formal definition. It is not hard to see that floodgate with input QX|Z produces

an asymptotically-valid LCB for fQ(µ), from which we immediately draw the following conclusions.
First, if µ does not actually depend on X, i.e., VarQ (µ(X,Z) |Z)

a.s.
= 0, then fQ(µ) = 0 regardless of

Q and floodgate is trivially asymptotically-valid. Second, when µ does depend on X, floodgate’s inference
will still be approximately valid as long as fQ(µ) − f(µ) ≈ 0, and this difference can be bounded by, for
instance, the χ2 divergence between PX|Z and QX|Z . The third, and perhaps most interesting, conclusion
is that the gap between I and f(µ) grants floodgate an extra layer of robustness as long as I−f(µ) is large
compared to fQ(µ)− f(µ). Thus even if QX|Z is a bad approximation of PX|Z , floodgate’s inference may
be saved if f(µ) is an even worse approximation of I, and this latter approximation is related to that of µ
for µ?. To make this last relation precise, we quantify µ’s approximation of µ? by focusing on a particular
representative of Sµ: for any µ : Rp → R,

µ̄(x, z) =

√
E [Var(µ?(X,Z) |Z)]

E [Var(µ(X,Z) |Z)]

(
µ(x, z)− E [µ(X,Z) |Z = z]

)
+ E [µ?(X,Z) |Z = z] , (2.8)

where 0/0 = 0. We can think of µ̄ as a generally accurate representative from Sµ, in that it takes µ and
corrects its conditional mean and expected conditional variance to match µ?. Note that µ̄ = µ? whenever
µ? ∈ Sµ, which includes anytime I = 0. We can now state our formal robustness result.

Theorem 2.6 (Floodgate robustness). For data {(Yi, Xi, Zi)}ni=1 i.i.d. draws from P satisfying E[Y 8] <∞
and Var (Y |X,Z) ≥ τ a.s. for some τ > 0, a sequence of working regression functions µn : Rp → R such
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that for some C and all n either VarQ(n) (µn(X,Z) |Z)
a.s.
= 0 or

max
{
E[µ8n(X,Z)],E

Q(n) [µ8n(X,Z)]
}

E
[

Var
Q(n) (µn(X,Z) |Z)

]4 ≤ C, and a

sequence of conditional distributions Q
(n)
X|Z , the output of Algorithm 1 when Q

(n)
X|Z is used as input satisfies

P (Lαn(µn) ≤ I + ∆n) ≥ 1− α−O(n−1/2), (2.9)

where

∆n = fQ
(n)

(µn)− I ≤ c1

√
E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
− c2 E

[
(µ̄n(X,Z)− µ?(X,Z))2

]
(2.10)

for some positive c1 and c2 that depend on P , where χ2(· ‖ ·) denotes the χ2 divergence.

The proof of Theorem 2.6 can be found in Appendix A.4. Equation (2.10) formalizes that larger MSE
of µ̄n actually improves robustness, although we remind the reader once again that when I = 0, the MSE
of µ̄n is always zero by construction in Equation (2.8). Given the n−1/2-rate half-width lower-bound for
floodgate, a sufficient condition for asymptotically-exact coverage is√

E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
= o

(
n−1/2 + E

[
(µ̄n(X,Z)− µ?(X,Z))2

])
. (2.11)

When Q
(n)
X|Z is a standard well-specified parametric estimator based on Nn independent samples, the left-

hand side has a O(N
−1/2
n ) rate. Thus if Nn � min{n,E

[
(µ̄n(X,Z)− µ?(X,Z))2

]−2}, then floodgate’s
coverage will be asymptotically-exact. For certain parametric models for X | Z, Section 3.2 will show how
to modify floodgate to attain asymptotically-exact inference without the need for estimation at all. We also
note in passing that a weaker form of condition (2.11) that replaces the n−1/2 with 1 is sufficient for a weaker
guarantee of asymptotic non-overestimation, i.e., the property that lim infn→∞ P (Lαn(µn) ≤ I + ε) ≥ 1−α
for any ε > 0.

Theorem 2.6 treats the sequence Q
(n)
X|Z as fixed, which of course means Q

(n)
X|Z can be estimated from

any data that is independent of the data floodgate is applied to. This means the same data can be used to

estimate µn and Q
(n)
X|Z . For Q

(n)
X|Z however, this strict separation may not be necessary in practice, and in

our simulations we found floodgate to be quite robust to estimating Q
(n)
X|Z on samples that included those

used as input to floodgate; see Section 4.7.
Another layer of robustness beyond that addressed in this section can be injected by replacing PX|Z in

floodgate with PX|Z,T for some random variable T . For instance, floodgate’s model-X assumption can be
formally relaxed to only needing to know a fixed-dimensional model for PX|Z by conditioning on T that is
a sufficient statistic for that model; see Section 3.2 for details. More generally, conditioning on T that is
a function of {(X,Z)}ni=1 may induce some degree of robustness, as conditioning on the order statistics of
the Xi can in conditional independence testing (Berrett et al., 2020).

2.6 Straightforward generalizations

Before moving onto extensions, we briefly address a few relatively straightforward generalizations of flood-
gate.

Extending the mMSE gap: The mMSE gap can be very naturally made invariant to the scale of Y and
bounded between 0 and 1 by dividing it by Var (Y ). And since Var (Y ) can be easily and asymptotically-
normally estimated under weaker conditions than already assumed for floodgate’s validity in Theorem 2.4,
it is straightforward to extend the floodgate procedure and its validity to perform inference on the scale-free
version I2

sf = I2/Var (Y ).
Drawing inspiration from the maximum correlation coefficient (Hirschfeld, 1935), taking the supremum

of the mMSE gap over transformations of Y leads to other desirable properties. For a set G of functions g
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mapping Y to its sample space, let IG = supg∈G Isf(g(Y )), where Isf(g(Y )) denotes the scale-free version
of the mMSE gap when Y is replaced by g(Y ). Then for any fixed function g ∈ G, floodgate’s LCB for
Isf(g(Y )) is also an asymptotically valid LCB for IG . And like µ, g can be chosen based on an independent
split of the data to make the gap between Isf(g(Y )) and IG as small as possible. If G forms a group, then
it is immediate that IG takes the same value when g(Y ) is used as the response, for any g ∈ G, i.e., IG is
invariant to any transformation g ∈ G of Y . For instance, we might choose G to be the group of all strictly
monotone functions, or of all bijections. Regardless of whether G is a group or not, if it is large enough
that it contains all bounded continuous functions then, by the Portmanteau Theorem, IG will be zero if
and only if Y ⊥⊥ X | Z. That is, for sufficiently large G, IG satisfies the key property of the MOVI in
Azadkia and Chatterjee (2019) and floodgate provides asymptotically valid inference for it.

Inference for group variable importance: In applications where a group of variables share a common
interpretation or are too correlated to powerfully distinguish, it is often necessary to infer a measure of
group importance instead of a MOVI. Luckily, when X is multivariate, the mMSE gap remains perfectly
well-defined and interpretable and floodgate (both f and Algorithm 1) retain all the same inferential
properties. Indeed, we apply floodgate to groups of variables in our genomics application in Section 5.

Transporting inference to other covariate distributions: In some applications, the samples we
collect may not be uniformly drawn from the population we are interested in studying. For instance,
our data may come from a lab experiment with covariates randomized according to one distribution,
while our interest lies in inference about a population outside the lab whose covariates follow a different
distribution. As long as the samples at hand share a common conditional distribution Y | X,Z with the
target population, it is relatively straightforward to perform an importance-weighted version of floodgate
that provides inference for the target population’s mMSE gap. We provide the details in Appendix D.

Adjusting for selection: When inference is required for many variables simultaneously, it is often
preferable to focus attention on a subset of variables whose inferences appear particularly interesting. But
if we only report the set of LCBs that are, say, farthest from zero, then our coverage guarantees will fail
to hold for this set due to selection bias (this is not a defect of floodgate, but a property of nearly every
non-selective inferential procedure). One way to address this may be to apply false coverage-statement rate
adjustments (Benjamini and Yekutieli, 2005) to floodgate LCBs. The application is straightforward, and
floodgate LCBs satisfy the monotone property required by Benjamini and Yekutieli (2005), although they
do not in general satisfy the independence or positive regression dependence on a subset (PRDS) condition
and hence would require a correction (Benjamini and Yekutieli, 2001) for strict guarantees to hold. We
leave a more formal treatment of selection adjustment to future work, but note also some simple ways to
perform benign selection.

First, if selection is performed using µ and/or independent data, then no adjustment is needed for
validity. For instance, if floodgate is run by data-splitting, we could arbitrarily use the first half of the
data (which is also used for choosing µ, but not for running floodgate) for selection, including selecting
precisely the subset of variables that µ depends on. In fact, we can even perform a certain type of benign
post-hoc data processing based on the floodgate data itself: if the floodgate data are used to construct
a transformation of the floodgate LCBs such that every transformed LCB either shrinks or remains the
same, then the transformed LCBs retain their marginal asymptotic validity. This is because any such
transformation, even one depending on the data or LCBs themselves, can only increase coverage of each
LCB by reducing it or leaving it unchanged; this is related to the screening procedure in Liu and Janson
(2020). This means, for instance, that if a selection procedure is applied to the floodgate data and used
to zero out any unselected LCBs, then as long as the zeroed-out LCBs are reported alongside the rest, the
marginal validity of all reported LCBs remains intact even though the same data was used to construct
the LCBs and to perform the selection that transformed them.
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3 Extensions

3.1 Beyond the mMSE gap

To demonstrate that the floodgate idea can be used beyond the mMSE gap, we consider the following
MOVI.

Definition 3.1 (Mean absolute conditional mean gap). The mean absolute conditional mean (MACM)
gap for variable X is defined as

I`1 = E [|E [Y |Z]− E [Y |X,Z]|] (3.1)

whenever all the above expectations exist.

The subscript in I`1 reflects its similarity to I2 = E
[
(E [Y |Z]− E [Y |X,Z])2

]
except with the square

replaced by the absolute value (also known as the `1 norm). Although we have not found a floodgate
function to enable inference for arbitrary Y , the remainder of this subsection shows how to perform
floodgate inference when Y is binary (coded as Y ∈ {−1, 1}). We note that when Y is binary, I`1 is zero
if and only if Y ⊥⊥ X | Z holds (the “if” part holds for non-binary Y as well), since the expected value
uniquely determines the distribution of a binary random variable.

In particular, for any (nonrandom) function µ : Rp → R, define

f`1(µ) = 2P
(
Y (µ(X̃, Z)− E [µ(X,Z) |Z]) < 0

)
− 2P

(
Y (µ(X,Z)− E [µ(X,Z) |Z]) < 0

)
(3.2)

where X̃ ∼ PX|Z and is conditionally independent of X and Y .

Lemma 3.2. If |Y | a.s.= 1, then for any µ such that f`1(µ) exists, f`1(µ) ≤ I`1, with equality when µ = µ?.

Obtaining an LCB for f`1(µ) is even easier than it was for f(µ) because f`1(µ) is essentially just one
expectation instead of a ratio of expectations, so a straightforward central limit theorem argument suffices;
Algorithm 2 formalizes the procedure and Theorem 3.3 establishes its asymptotic coverage.

Algorithm 2 Floodgate for the MACM gap

Input: Data {(Yi, Xi, Zi)}ni=1, PX|Z , a working regression function µ : Rp → R, and a confidence level
α ∈ (0, 1).
Let Ui = µ(Xi, Zi)− E[µ(Xi, Zi) |Zi] and compute

Ri =

{
P (Ui < 0 |Zi)− 1{Ui<0} if Yi = 1

P (Ui > 0 |Zi)− 1{Ui>0} if Yi = −1

for i ∈ [n], and compute its sample mean R̄ and sample variance s2.

return Lower confidence bound Lαn(µ) = 2 max
{
R̄− zαs√

n
, 0
}

.

Theorem 3.3 (MACM gap floodgate validity). For any given working regression function µ : Rp → R
and i.i.d. data {(Yi, Xi, Zi)}ni=1, Lαn(µ) from Algorithm 2 satisfies

P (Lαn(µ) ≤ I`1) ≥ 1− α−O(n−1/2).

Theorem 3.3 is proved in Appendix A.5, and perhaps its most striking feature is its lack of assumptions,
which follows from the boundedness of f`1(µ) and the Ri. Like f , f`1 is invariant to any transformation
of µ that leaves sign(µ(X,Z) − E[µ(X,Z) |Z]) unchanged on a set of probability 1, making its validity
immediately uniform over large classes of µ.

Although the boundedness of the Ri streamlines the coverage guarantees, their conditional probabilities
make it somewhat more complicated to carry out efficient computation of Algorithm 2. In particular, the
sharp boundary at zero inside the probabilities requires a certain degree of smoothness in µ and P to be
able to estimate the Ri by Monte Carlo samples analogously to Section 2.3. We give precise sufficient
conditions and a proof of their validity in Appendix E, and defer study of Algorithm 2’s accuracy and
robustness to future work.
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3.2 Relaxing the assumptions by conditioning

In this section we show that we can relax the assumption that PX|Z be known exactly and apply floodgate
when only a parametric model is known for PX|Z . This is inspired by Huang and Janson (2020) which
similarly relaxes the assumptions of model-X knockoffs. We follow the same general principle of conditioning
on a sufficient statistic of the parametric model for PX|Z , but doing so in floodgate requires a somewhat
different approach than Huang and Janson (2020).

The approach we take in this section will involve computations on the entire matrix of observations, i.e.,
(X,Z) ∈ Rn×p whose rows are the covariate samples (Xi, Zi) and y ∈ Rn whose entries are the response
samples Yi. Now suppose that we know a model FX|Z for PX|Z with a sufficient statistic functional for
n independent (but not necessarily identical) samples X | Z given by T (X,Z), whose random value we
will denote simply by T . We will assume that T is invariant to permutation of the rows of (X,Z) (as we
would expect for any reasonable T , since these rows are i.i.d.).

The key idea that allows us to perform floodgate inference without knowing the distribution of X | Z
is that, by definition of sufficiency, we do know the distribution of X | Z,T . Leveraging this idea requires
some adjustment to the floodgate procedure, and we start by defining a conditional analogue of f .

fTn (µ) :=
E [Cov(µ?(Xi, Zi), µ(Xi, Zi) |Z,T )]√

E [Var(µ(Xi, Zi) |Z,T )]
, (3.3)

again with the convention 0/0 = 0. Note that fTn (µ) does not depend on the choice of i thanks to T ’s
permutation invariance, but it does depend on the sample size n. Nevertheless, it follows immediately from
the proof of Lemma 2.2 that fTn (µ) ≤ fTn (µ?) for any nonrandom µ. On the other hand, fTn (µ?) 6= I, but
instead a different relationship that is nearly as useful holds:

fTn (µ?) ≤ f(µ?) = I,
due to the monotonicity of conditional variance.

With floodgate property (a) (fTn (µ) ≤ I) established, we now turn to property (b): the ability to
construct a LCB for fTn (µ). In an analogous way as for f(µ), we can compute n unbiased estimators of
the numerator and the squared denominator, but these estimators are no longer i.i.d. because they are
linked through T , so we cannot immediately apply the central limit theorem or delta method as we did in
Section 2.2. Our workaround is to split the data into batches and only condition on the sufficient statistic
within each batch. This way, there is still independence between batches and we can apply the central limit
theorem and delta method across batches. This strategy is spelled out in Algorithm 3 (under the simplifying
assumption that the number of batches, n2, evenly divides the sample size n) and Theorem 3.4 establishes
its asymptotic coverage. We call this procedure co-sufficient floodgate because the term “co-sufficiency”
describes sampling conditioned on a sufficient statistic (Stephens, 2012).

Algorithm 3 Co-sufficient floodgate

Input: The inputs of Algorithm 1, a sufficient statistic functional T , and a batch size n2.
1: Let n1 = n/n2 and for m ∈ [n1], denote (Xm,Zm) = {Xi, Zi}mn2

i=(m−1)n2+1, and let Tm = T (Xm,Zm).

2: For m ∈ [n1], compute

(Rm, Vm) =
1

n2

 mn2∑
i=(m−1)n2+1

Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm]),

mn2∑
i=(m−1)n2+1

Var (µ(Xi, Zi) |Zm,Tm)

 ,

their sample mean (R̄, V̄ ), their sample covariance matrix Σ̂, and s2 = 1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
.

3: return Lower confidence bound Lα,Tn (µ) = max
{

R̄√
V̄
− zαs√

n1
, 0
}

, with the convention that 0/0 = 0.
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Theorem 3.4 (Co-sufficient floodgate validity). For any given working regression function µ : Rp → R,
i.i.d. data {(Xi, Zi, Yi)}ni=1, and permutation-invariant sufficient statistic functional T , if E[Y 2] <∞ and

E[µ4(X,Z)] <∞, then Lα,Tn (µ) from Algorithm 3 satisfies

P
(
Lα,Tn (µ) ≤ I

)
≥ 1− α− o(1).

The proof can be found in Appendix A.6; the weaker moment conditions than Theorem 2.3 correspond
to the weaker o(1) term, and we defer to future work strengthening it to O(n−1/2) following similar
techniques as earlier results in the paper. Regarding computation, as in Section 2.3, we can replace the
conditional expectations in the expressions for Rm and Vm with Monte Carlo estimates based on resampling
Xm | Zm,Tm conditionally independently of X and y; see Appendix F.1 for details. For a given µ, we
may worry that co-sufficient floodgate loses some accuracy relative to regular floodgate due to the gap
between f(µ) and fTn (µ), but in fact this gap is typically O(n−1

2 ) for fixed-dimensional parametric models;
we establish this for Gaussian and discrete Markov Chain covariate models in Appendices F.2 and F.3,
respectively.

4 Simulations

Source code for conducting our simulation studies can be found at https://github.com/LuZhangH/

floodgate.

4.1 Setup

In the following subsections of this section, we conduct simulation studies to complement the main theoret-
ical claims of Section 2.2. We study the effects of the sample-splitting proportion (Section 4.2), covariate
dimension (Section 4.3), covariate dependence (Section 4.5), sample size (Section 4.6), and model misspec-
ification (Section 4.7) on floodgate. In Section 4.4, we numerically compare floodgate with the method
proposed in Williamson et al. (2020). We also study the extensions to floodgate for the MACM gap (Sec-
tion 4.8) and co-sufficient floodgate (Section 4.9). Each simulation study generates a set of covariates and
performs floodgate inference on each in turn (i.e., treating each covariate as X and the rest as Z) before
averaging its results (either coverage or half-width) over the covariates.

This paragraph describes the simulation setup for all but the first simulation of Section 4.4. The
covariates are sampled from a Gaussian autoregressive model of order 1 (AR(1)) with autocorrelation 0.3,
except in Section 4.5 where this value is varied over. The conditional distribution of Y | X,Z is given by
µ?(X,Z) plus standard Gaussian noise, and in each subsection we perform experiments with both a linear
and a highly nonlinear model. The linear model is sparse with non-zero coefficients’ locations independently
uniformly drawn from among the covariates, and the non-zero coefficients’ values having uniform random
signs and identical magnitudes (5, unless stated otherwise) divided by

√
n. The nonlinear model combines

zero’th-, first-, and second-order interactions between nonlinear (mostly trigonometric and polynomial)
transformations of elementwise functions of a subset of covariates, and then multiplies this entire function
by an amplitude (50, unless stated otherwise) divided by

√
n; see Appendix G.1 for details. Both models

use n = 1100, p = 1000, and a sparsity of 30 unless stated otherwise.
In our implementations of floodgate, we split the sample into two equal parts (justified by the results of

Section 4.2) and use the first half to fit µ. In most of the simulations, we consider four fitting algorithms (two
linear, two nonlinear): the LASSO (Tibshirani, 1996), Ridge regression, Sparse Additive Models (SAM;
Ravikumar et al. (2009)), and Random Forests (Breiman, 2001); when the response is binary there are two
additional fitting algorithms: logistic regression with an L1 penalty and an L2 penalty; see Appendix G.2
for implementation details of these algorithms. The Monte Carlo version of floodgate from Section 2.3 is
not needed for the linear methods, and for the nonlinear methods, K = 500 is used.

Given the novelty of considering inference for the mMSE gap, it is challenging to compare floodgate
to alternatives. A key exception is Williamson et al. (2020), who provide inference for the mMSE gap
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(up to a scaling factor and under different assumptions than ours), but unfortunately it involves refitting
a regression for each variable, making it very computationally intractable to run alongside most of our
simulations. Instead, in Section 4.4, we consider two settings where we can compare Williamson et al.
(2020) with floodgate and find their method gives considerably less accurate results. Another exception
is in low-dimensional Gaussian linear models, where the mMSE gap is a simple function of the coefficient
and thus ordinary least squares (OLS) inference can be compared as an alternative to floodgate; see
Appendix G.3 for details of how it is made comparable. Thus, in the low-dimensional linear-µ? simulations
of Sections 4.3 and 4.5, we compare floodgate’s inference to that of OLS, which acts as a sort of oracle
since its inference relies on very strong knowledge of Y | X,Z which floodgate does not rely on, and OLS
is not valid without that knowledge (and does not apply in high dimensions).

We always take the significance level α = 0.05, and all results are averaged over 64 independent
replicates unless stated otherwise (although in most cases each plotted point is averaged over multiple
covariates per replicate as well, since we apply floodgate to each covariate in turn in each replicate).

4.2 Effect of sample splitting proportion

As mentioned in Section 2.2, we can split a fixed sample size n into a first part of size ne for estimating µ?

and use the remaining n− ne samples for floodgate inference via Algorithm 1. The choice of ne represents
a tradeoff between higher accuracy in estimating µ? (larger ne) and having more samples available for
inference (smaller ne).

In Figures 1 and 2, we vary the sampling splitting proportion and plot the average half-widths of
floodgate LCBs of non-null covariates under distributions with the linear and the nonlinear µ? described in
Section 4.1, respectively. Corresponding coverage plots can be found in Appendix G.4. Our main takeaway
from these plots is that, while the optimal choice of splitting proportion varies between distributions and
algorithms, the choice of 0.5 seems to frequently achieve a half-width close to the optimum. As one
would expect, however, as the signal or sample size grows, there are diminishing returns to ne, and the
optimal sample split for some algorithms moves to the left. Acknowledging that in some circumstances a
more informed choice than 0.5 can be made, we nevertheless choose 0.5 as the default splitting proportion
throughout the rest of our simulations.
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Figure 1: Average half-widths for the linear-µ? simulations of Section 4.2. The coefficient amplitude is
given in the plot titles; see Section 4.1 for remaining details. Standard errors are below 0.002 (left) and
0.005 (right).

In addition to displaying the dynamics of sample splitting proportion, these plots also demonstrate
two other phenomena. First, the linear algorithms (LASSO and Ridge) dominate when µ? is linear, and
the nonlinear algorithms (SAM and Random Forest) dominate when µ? is nonlinear. Second, Ridge has
smaller half-width than LASSO for all sample splitting proportions, which can be explained by floodgate’s
invariance to (partially-)linear µ: all that matters is getting the sign of the coefficient right, and setting a
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Figure 2: Average half-widths for the nonlinear-µ? simulations of Section 4.2. The sample size n is given
in the plot titles; see Section 4.1 for remaining details. Standard errors are below 0.01 (left) and 0.006
(right).

coefficient to zero guarantees a zero LCB. So the LASSO suffers from being a sparse estimator, although
in practice we may still prefer it because of the corresponding computational savings of only having to run
floodgate on a subset of covariates.

4.3 Effect of covariate dimension

To understand the dependence of dimension on floodgate, we perform simulations varying the dimension.
In particular, in the first panel of Figure 3, we vary the covariate dimension and plot the average half-
widths of floodgate LCBs of non-null covariates when µ? is linear. This setting enables comparison with
OLS because it is linear and low-dimensional, so we also include a curve for OLS. The second panel of
Figure 3 is similar except with a smaller ne that is favorable for the linear algorithms in floodgate. The
main takeaway is that floodgate’s accuracy is relatively unaffected by dimension, and although for very
low dimensions (where OLS is known to be essentially optimal) it is less accurate than OLS, for a good
choice of ne floodgate’s half-widths are at most about 50% larger than OLS’s and actually narrower than
OLS’s when p ≈ n/2. A similar message is found with nonlinear µ? in Figure 4, except OLS no longer
applies and in this case the nonlinear algorithms outperform the linear ones in floodgate. Coverage plots
corresponding to Figures 3 and 4 can be found in Appendix G.4.
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Figure 3: Average half-widths for the linear-µ? simulations of Section 4.3 with floodgate splitting proportion
0.5 (left) and 0.25 (right). OLS is run on the full sample. p is varied on the x-axis; see Section 4.1 for
remaining details. Standard errors are below 0.002 (left) and 0.002 (right).
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Figure 4: Average half-widths for the nonlinear-µ? simulations of Section 4.3. The sample size n is given
in the plot titles and p is varied on the x-axis; see Section 4.1 for remaining details. Standard errors are
below 0.008 (left) and 0.005 (right).

4.4 Comparison with Williamson et al. (2020)

This section presents two numerical examples comparing the performance of Williamson et al. (2020)’s
method, which we call W20b, with that of floodgate. We use W20b according to that paper’s instruc-
tions for ensuring validity for any value of I, i.e., we implement the sample-split and cross-fitted version
using the default function vimp rsquared in the W20b authors’ R package vimp. Unfortunately, W20b
is considerably more computationally intensive than floodgate, and thus we only compare the two in one
low-dimensional example and one high-dimensional example. Since W20b gives confidence intervals for
I2/Var (Y ), we transform its inference into a 1 − α coverage LCB for I by taking the lower bound from
its 1 − 2α confidence interval, multiplying it by Var (Y ), and then taking the square root. Note that the
theory underpinning W20b implies it should have coverage exactly 1 − α asymptotically, as opposed to
floodgate’s guarantee of just having asymptotic coverage at least 1 − α. Nevertheless, in the settings we
consider in this subsection, we find W20b’s coverage is sometimes well below 1− α and often far above it,
while floodgate’s remains at or above 1 − α throughout. And in all settings, even when W20b’s coverage
is below that of floodgate, floodgate’s LCB is considerably farther from zero than W20b’s, thus floodgate
provides more-informative inference than W20b in these simulations.
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Figure 5: Coverage (left) and average LCB values (right) for floodgate and W20b in the sine function
simulation of Section 4.4. The frequency λ is varied on the x-axis, and the solid blue line in the right-hand
plot shows the value of I. The results are averaged over 640 independent replicates, and the standard
errors are below 0.006 (left) and 0.01 (right).
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Our first simulation uses a sine function of varying frequency for µ?. In particular, p = 2, the covariates
(X,Z) ∈ R2 are i.i.d. uniformly distributed on (−1, 1), and Y equals A(λ) sin(λX) plus standard Gaussian
noise, where λ > 0 controls the frequency and A(λ) is chosen so that I = 0.5 regardless of λ. Both
floodgate and W20b must internally fit an estimate of µ?, and for both methods we use locally-constant loess
smoothing with tuning parameters selected by 5-fold cross-validation, following a different two-dimensional
simulation example in Williamson et al. (2019). Figure 5 shows the coverages and average LCBs of both
methods applied to both X (non-null) and Z (null) as λ varies. Larger λ corresponds to less-smooth
E [Y |X,Z] and hence a more challenging estimation problem (for both methods), and both methods
become generally more conservative and less accurate as λ grows. Yet floodgate’s LCB provides consistently
and considerably more accurate inference over the entire range of lambda, with the starkest difference
coming in the middle of the frequency range when floodgate’s LCB captures about 70% of I’s value while
W20b’s LCB captures only about 10% of it.
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Figure 6: Coverage (left) and average LCB values (right) for floodgate, W20b, and OLS (run on the full
sample) in the linear-µ? simulation of Section 4.4. p is varied on the x-axis, and the solid blue line in the
right-hand plot shows the value of I; see Section 4.1 for remaining details. The results are averaged over
640 independent replicates, and the standard errors are below 0.012 (left) and 0.004 (right).

Our second simulation compares both methods in the higher-dimensional setting of the left panel of
Figure 3. Due to the computational challenge of running Williamson et al. (2020)’s method, we only
consider the two most efficient algorithms (LASSO and Ridge) among the four described in Appendix G.2.
Figure 6 shows W20b to have somewhat inconsistent coverage and always produce LCBs that are quite
close to zero compared with floodgate’s, which consistently provide coverage at or above nominal. Since
even W20b with LASSO and Ridge was far slower to compute than floodgate, we did not include W20b
in the remaining simulations of this section, all of which have p ≥ 500.

4.5 Effect of covariate dependence

In Figures 7 and 8, we vary the covariate autocorrelation coefficient and plot the average half-widths of
floodgate LCBs of non-null covariates under distributions with the linear and the nonlinear µ? described in
Section 4.1, respectively. Figure 7 also includes a curve for OLS. Since I in a linear model is proportional to√
E [Var (X |Z)] which varies with the autocorrelation coefficient, we divided the half-widths in Figures 7

and 8 by this quantity to make it easier to compare values across the x-axis. The main takeaway is that the
effect of covariate dependence on floodgate is somewhat mild until the dependence gets very large (> 0.5
correlation). This behavior is intuitive, and indeed we see a parallel trend in the curves for OLS inference
in Figure 7. Coverage plots corresponding to Figures 7 and 8 can be found in Appendix G.4.
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Figure 7: Average half-widths for the linear-µ? simulations of Section 4.5. p is given in the plot titles
and the covariate autocorrelation coefficient is varied on the x-axis; see Section 4.1 for remaining details.
Standard errors are below 0.002 (left) and 0.002 (right).
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Figure 8: Average half-widths for the nonlinear-µ? simulations of Section 4.5. p is given in the plot titles
and the covariate autocorrelation coefficient is varied on the x-axis; see Section 4.1 for remaining details.
Standard errors are below 0.01 (left) and 0.009 (right).

4.6 Effect of sample size

In Figures 9 and 10, we vary the sample size and plot the coverages and average half-widths of floodgate
LCBs of non-null covariates under distributions with the linear and the nonlinear µ? described in Sec-
tion 4.1, respectively. The main takeaway is that the accuracy of floodgate depends heavily on sample
size. Note that in these plots, the signal size is scaled down by the square root of the sample size, so the
selection problem is roughly getting no easier as the sample size increases, but we still see that floodgate
can achieve much more accurate inference for larger sample sizes.

4.7 Robustness

In order to study the robustness of floodgate to misspecification of PX|Z , we consider a scenario we expect
to arise in practice: a data analyst does not know PX|Z exactly, so instead they estimate it using the
data they have, and then treat the estimate as the “known” PX|Z and proceed with floodgate. Note that
if the analyst splits the data and uses the same subset for estimating µ and for estimating PX|Z , then
Theorem 2.6 applies, but if they use all of their data to estimate PX|Z , then our theory does not apply.
Also note we are not studying the performance of co-sufficient floodgate in this subsection.

Figures 11 and 12 vary how much in-sample data is used PX|Z-estimation and show the coverage
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Figure 9: Coverage (left) and average half-widths (right) for the linear-µ? simulations of Section 4.6. The
sample size n is varied on the x-axis; see Section 4.1 for remaining details. Standard errors are below 0.007
(left) and 0.003 (right).
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Figure 10: Coverage (left) and average half-widths (right) for the nonlinear-µ? simulations of Section 4.6.
The sample size n is varied on the x-axis; see Section 4.1 for remaining details. Standard errors are below
0.004 (left) and 0.011 (right).

of floodgate for null and non-null variables when µ? is linear and nonlinear, respectively. The estimation
procedure is to fit the graphical LASSO (GLASSO) with 3-fold cross-validation to a subset of the in-sample
data and treat PX|Z as conditionally Gaussian with covariance matrix given by the GLASSO estimate.
Since n = 1100 in all these simulations and the sample splitting proportion is 0.5, when the x-axis value
passes 550 is when Theorem 2.6 stops applying. However, we see the coverage is consistently quite high,
only dropping slightly for very low estimation sample sizes (i.e., very bad estimates of the covariance
matrix. In the nonlinear model, we see the coverage being rather conservative for the non-null variables,
reflecting the coverage-protective gap between f(µ) and f(µ?) = I. Average half-width plots corresponding
to Figures 11 and 12 can be found in Appendix G.4.

4.8 Floodgate for MACM gap

Here we study empirical performance of floodgate applied to the MACM gap as described in Section 3.1.
Conditional on the covariates, the binary response is generated from a logistic regression with log(P(Y=1 |X,Z))

log(P(Y=−1 |X,Z))

given by the linear µ?(X,Z) in Section 4.1. We set the sample size n = 1000, and the remaining simula-
tion parameters to be the values described in Section 4.1. Figure 13 shows that floodgate has consistent
coverage over a range of algorithms for fitting µ, and we see the dynamics of the average half-width as
the explained variance proportion in PY |X,Z increases. Note that Ri in Algorithm 2 needs to in general
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Figure 11: Coverage of null (left) and non-null (right) covariates when the covariate distribution is estimated
in-sample for the linear-µ? simulations of Section 4.7. See Section 4.1 for remaining details. Standard errors
are below 0.001 (left) and 0.008 (right).
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Figure 12: Coverage of null (left) and non-null (right) covariates when the covariate distribution is estimated
in-sample for the nonlinear-µ? simulations of Section 4.7. See Section 4.1 for remaining details. Standard
errors are below 0.001 (left) and 0.003 (right).

be estimated by Monte Carlo samples (see Appendix E for details) and in Figure 13, we set K = 100 and
M = 400 whenever the Monte Carlo version is used.

4.9 Co-sufficient floodgate

Finally, we study the empirical performance of co-sufficient floodgate as described in Section 3.2 as com-
pared to the original floodgate method which is given full knowledge of PX|Z . We set the covariate dimen-
sion p = 50, the number of Monte Carlo samples K = 100, and the amplitude value for nonlinear-µ? to 30.
The remaining simulation parameters are set to the values described in Section 4.1. Co-sufficient floodgate
and the original floodgate procedure use the same working regression function, fitted from ne = 500 sam-
ples, and use the same number of samples n−ne for inference. The batch size n2 for co-sufficient floodgate
is 300 and we vary the number of batches n1 = (n− ne)/n2 on the x-axes. Co-sufficient floodgate is given
the conditional variance of the Gaussian distribution of X | Z, but not its conditional mean, parameterized
by a (p−1)-dimensional coefficient vector multiplying Z. Figure 14 and 15 show that co-sufficient floodgate
has satisfying coverage even when the number of batches is small, and has average half-width quite close
to the original floodgate procedure which is given the conditional mean of X | Z exactly. Note that despite
the linearity of the true model in Figure 14, the LASSO performs poorly because the true model is quite
dense (30 of the 50 covariates are non-null), which also explains why ridge regression performs so well.
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Figure 13: Coverage (left) and average half-widths (right) for the binary response simulations of Section 4.8.
The explained variance proportion is varied over the x-axis. See Section 4.1 and 4.8 for remaining details.
Standard errors are below 0.006 (left) and 0.001 (right).
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Figure 14: Coverage (left) and average half-widths (right) for co-sufficient floodgate and original floodgate
in the linear-µ? simulations. The number of batches n1 is varied over the x-axis. See Section 4.1 and 4.9
for remaining details. Standard errors are below 0.008 (left) and 0.001 (right).
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Figure 15: Coverage (left) and average half-widths (right) for co-sufficient floodgate and original floodgate
in the nonlinear-µ? simulations. The number of batches n1 is varied over the x-axis. See Section 4.1 and
4.9 for remaining details. Standard errors are below 0.009 (left) and 0.002 (right).
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5 Application to genomic study of platelet count

The study of genetic heritability is the study of how much variance in a trait can be explained by genetics.
Precise definitions vary based on modeling assumptions (Zuk et al., 2012), but the fundamental concept
is intuitive and central to genomics; indeed the goal of genome-wide association studies (GWAS) is often
precisely to identify single nucleotide polymorphisms (SNPs) or loci that explain the most variance in a
trait. To connect heritability with the present paper, suppose Y denotes a trait, X denotes a SNP or
group of SNPs, and Z denotes all the remaining SNPs not included in X. Then the mMSE gap I2 exactly
measures the variance in Y that is attributable to X. Thinking of I2 as a sort of conditional heritability
also makes it easy to include non-genetic factors such as age in Z, since such factors may influence Y but
not be of interest to geneticists. Thus I2 can capture both gene-gene and gene-environment interactions.

Having established I2 as a quantity of interest, we proceed to infer it for blocks of SNPs at various
resolutions of the human genome by applying floodgate to a platelet GWAS from the UK Biobank. Our
analysis builds on the work of (Sesia et al., 2020b), which carefully applied model-X knockoffs to the same
data to perform multi-resolution selection of important SNPs, referred as KnockoffZoom. The output of
their analysis is a so-called “Chicago plot”, which plots stacked blocks of selected SNPs at a range of
block resolutions. The height of the Chicago plot at a given location on the genome reflects the resolution
at which the SNP at that location was rejected, with a greater height corresponding to a smaller block
of SNPs being rejected. However, since the Chicago plot is derived from a pure selection method, it
contains no information about the strength of the relationship between the trait and any of the blocks of
SNPs. Floodgate enables us to construct a colored Chicago plot by computing an LCB for each selected
block of SNPs and reporting an LCB of zero (without computation) for all unselected blocks of SNPs; see
Appendix H for implementation details.
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Figure 16: Colored Chicago plot analogous to Figure 1a of Sesia et al. (2020b). The color of each point
represents the floodgate LCB for the block that contains the SNP at the location indicated on the x-axis
at the resolution (measured by average block width) indicated on the y-axis (note some blocks appearing
in the original Chicago plot have an LCB of zero and hence are colored grey). The second panel zooms
into the region of the first panel containing the largest floodgate LCB.

In particular, Figure 16 is a colored version of Figure 1a of (Sesia et al., 2020b), which displayed the
genomic regions on chromosome 12 that those authors found to be related to platelet count in the UK
Biobank data. Our colored figure shows how informative floodgate LCBs can be over and beyond a pure
selection method, as it shows the signal is far from being spread evenly over the SNPs selected by Sesia
et al. (2020b). This information is crucial for the prioritization of selected regions, as without color the
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Chicago plot does not give any indication which of the selected SNPs the data indicates are most important
(we note that the height of the tallest selected block at a SNP need not correspond to its importance, and
indeed there are many pairs of locations in the figure such that one has a taller block in the original Chicago
plot but the other has a brighter color in Figure 16).

6 Discussion

Floodgate is a powerful and flexible framework for rigorously inferring the strength of the conditional
relationship between Y and X. We prove results about floodgate’s validity, accuracy, and robustness and
address a number of extensions/generalizations, but a number of questions remain for future work and we
highlight two here:

• Floodgate relies on a working regression function that is not estimated from the same data used for
inference, which usually will require data splitting. It would be desirable, both from an accuracy
standpoint and a derandomization standpoint, to remove the need for data splitting or at least find
a way for samples in one or both splits to be recycled between regression estimation and inference.

• The floodgate framework is applied here to the mMSE gap and the MACM gap, but more generally
it constitutes a new tool for flexible inference of nonparametric functionals, and we expect it can
find use for inferring other MOVIs. The main challenge for its application is the identification of
an appropriate floodgate functional, and it would be of interest to better understand principles or
even heuristics for finding such functionals for a given MOVI. Indeed we make no claim that the
functionals proposed in this paper are unique for their respective MOVIs, and there may be others
that lead to better floodgate procedures.
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A Proofs for main text

Throughout the proofs, we will abbreviate (X,Z) = W, (X̃, Z) = W̃ for simplicity and write w = (x, z).
And g?, g : Rp−1 → R; h?, h : Rp → R are defined as below:

g?(z) = E[µ?(W ) |Z = z], g(z) = E[µ(W ) |Z = z], (A.1)

h?(w) = µ?(w)− g?(z), h(w) = µ(w)− g(z). (A.2)

And we can further decompose Y :

Y = E [Y |X,Z] + ε(Y,X,Z) = µ?(W ) + ε(Y,W ) = g?(Z) + h?(W ) + ε(Y,W ). (A.3)

Let L2(Ω,F , P ) denote the vector space of real-valued random variables with finite second moments, which
is a Hilbert space, and define its subspace L2(W ) := L2(Ω,A (W ), P ), where A (W ) is the sub σ-algebra
generated by W = (X,Z). (L2(Z) := L2(Ω,A (Z), P ) is defined analogously). Then µ?(W ), g?(Z) can
be interpreted as the projection of Y onto the subspace L2(W ), L2(Z) respectively and µ?(W ) admits a
orthogonal decomposition µ?(W ) = g?(Z) + h?(W ). We remark that implies the following fact:

E[ε(Y,W ) |W ] = 0, E[h(W ) |Z] = 0. (A.4)

Also mentioned in (2.6), we can formally derive the following equivalent expressions of f(µ),

f(µ) :=
E [Cov(µ?(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]

=
E [Cov(h?(W ), h(W ) |Z)]√

E [h2(W )]

=
E [h?(W )h(W )]√

E [h2(W )]
(A.5)

=
E [Y h(W )]√
E [h2(W )]

− E [ε(Y,W )h(W )]√
E [h2(W )]

− E [g?(Z)h(W )]√
E [h2(W )]

=
E [Y h(W )]√
E [h2(W )]

(A.6)

where the second equality is by the definition of h?(W ), h(W ), the third equality holds by the total law
of conditional expectation and (A.4), the fourth equality comes from (A.3), and the last equality holds
due to (A.4) and the total law of conditional expectation. As (A.6) is very concise, we will work with this
expression of f(µ) throughout the following proof. Also note we have a equivalent expression of I.

√
E [(h?)2(W )] =

√
E
[
E
[
(µ?(W )− E [µ?(W ) |Z])2

∣∣∣Z]] =
√

E [Var (E [Y |X,Z] |Z)] = I. (A.7)
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A.1 Proofs in Section 2.2

A.1.1 Lemma 2.2

Proof of Lemma 2.2. When E [Var(µ(X,Z) |Z)] = 0, the numerator must also be zero, and hence the ratio
is 0 by convention and f(µ) ≤ I. Now assuming E [Var(µ(X,Z) |Z)] > 0,

f(µ) =
E [Cov(µ(X,Z), µ?(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]

=
E
[√

Var(µ(X,Z) |Z)
√

Var(µ?(X,Z) |Z)Cor (µ(X,Z), µ?(X,Z) |Z)
]

√
E [Var(µ(X,Z) |Z)]

≤
E
[√

Var(µ(X,Z) |Z)
√

Var(µ?(X,Z) |Z)
]

√
E [Var(µ(X,Z) |Z)]

≤
√
E [Var(µ(X,Z) |Z)]

√
E [Var(µ?(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
= I,

where the first inequality uses the fact that correlation is bounded by 1, and the second inequality uses
Cauchy–Schwarz. Finally, it is immediate that f(µ?) = I.

A.1.2 Theorem 2.3

Proof of Theorem 2.3. Under the stated moment conditions E
[
Y 12

]
,E
[
µ12(X,Z)

]
<∞, we have E [Y h(W )]

and E
[
h2(W )

]
exist, where recall h(W ) = µ(W ) − E [µ(W ) |Z] is defined in Equation (A.2). This holds

due to the following elementary facts

E [Y h(W )] ≤
√
E [Y 2]

√
E [h2(W )], E

[
h2(W )

]
≤ E

[
(E [µ(W ) |Z])2

]
+ E

[
h2(W )

]
= E

[
µ2(W )

]
,

(A.8)
which come from the Cauchy–Schwarz inequality and E [E [µ(W ) |Z]h(W )] = E [E [µ(W |Z]E [h(W ) |Z]] =
0, respectively. Note f(µ) = E [Y h(W )] /

√
E [h2(W )] from Equation (A.6), thus 0 ≤ f(µ) < ∞. First,

when E [Var(µ(X,Z) |Z)] = 0, we immediately have coverage since Lαn(µ) = 0 by construction and I ≥ 0
by its definition.

Regarding the case where E [Var(µ(X,Z) |Z)] 6= 0, we assume E
[
h2(W )

]
= 1 for the following proof

without loss of generality (since floodgate is invariant to positive scaling). By Lemma 2.2, we have {Lαn(µ) ≤
f(µ)} ⊂ {Lαn(µ) ≤ I}, so it suffices to show that

P (Lαn(µ) ≤ f(µ)) ≥ 1− α−O(1/
√
n). (A.9)

Now we consider four different cases.

(I) Var (Y h(W )) = 0 and Var (Var (h(W ) |Z)) = 0.

(II) Var (Y h(W )) > 0 and Var (Var (h(W ) |Z)) = 0.

(III) Var (Y h(W )) = 0 and Var (Var (h(W ) |Z)) > 0.

(IV) Var (Y h(W )) > 0 and Var (Var (h(X) |Z)) > 0.

Note that assuming E
[
Y 4
]

and E
[
µ4(X,Z)

]
< ∞ ensures all the above variances exist. The proof is

omitted since later we will use the same strategy to show E
[
(Var (h(W ) |Z))3

]
< ∞ under the moment

condition E
[
µ6(W )

]
<∞. Notice that, when Var (Y h(W )) = 0, we have Ri = E [Y h(W )] for i ∈ [n], and
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thus R̄ = E [Y h(W )], Σ̂11 = Σ̂12 = 0; when Var (Var (h(W ) |Z)) = 0, we have Vi = E
[
h2(W )

]
for i ∈ [n],

and thus V̄ = E
[
h2(W )

]
, Σ̂22 = Σ̂12 = 0.

Case (I): Lαn(µ) simply equals f(µ) since f(µ) = E [Y h(W )] /
√

E [h2(W )], hence (A.9) holds.
Case (II): We have

Lαn(µ) = max

{
R̄√

E [h2(W )]
− zαs√

n
, 0

}
,

where s2 = Σ̂11/V̄ , and can write down the following equivalence,

{Lαn(µ) ≤ f(µ)} =

{
R̄− zαΣ̂11√

n
≤ E [Y h(W )]

}
.

Now the problem has been reduced to showing that

P

(
R̄− zαΣ̂11√

n
≤ E [Y h(W )]

)
≥ 1− α−O(1/

√
n). (A.10)

Notice R̄ is simply the sample mean estimator of the quantity E [Y h(W )] and Σ̂11 is the corresponding
sample variance. Asymptotic coverage validity is a immediate result of the central limit theorem and
Slutsky’s theorem. To establish the 1/

√
n rate, stronger results are needed. The classical Berry–Esseen

bound serves as the main ingredient, which states that

Lemma A.1 (Berry–Esseen bound). There exists a positive constant C, such that for i.i.d. mean zero
random variables X1, . . . , Xn satisfying

(1) E[X2
1 ] = σ2 > 0

(2) E[|X1|3] = ρ <∞

if we define Fn(x) to be the cumulative distribution function (CDF) of the scaled average
√
nX̄/σ and

denote the CDF of the standard normal distribution by Φ(x), then we have

sup
x∈R
|Fn(x)− Φ(x)| ≤ Cρ

σ3
√
n
. (A.11)

And since σ in the above result is generally unknown and usually replaced by the sample variance
s2
σ = 1

n

∑n
i=1(Xi − X̄)2, we need the following lemma, which is proved in Bentkus et al. (1996).

Lemma A.2 (Berry–Esseen bound for Student’s statistic). Under the same conditions as in Lemma A.1,
if we redefine Fn(x) to be the cumulative distribution function (CDF) of the Student t-statistic

√
nX̄/sσ,

then we have the following Berry–Esseen bound

sup
x∈R
|Fn(x)− Φ(x)| ≤ C ′ρ

σ3
√
n
. (A.12)

To apply Lemma A.2, since we are in case (II) where Var (Y h(W )) > 0,Var (Var (h(W ) |Z)) = 0, it
suffices to verify the finiteness of the term “ρ” in our context:

ρ = E
[
|Y h(W )− E [Y h(W )]|3

]
≤ 23−1

(
E
[
Y 3h3(W )

]
+ |E [Y h(W )] |3

)
<∞

where the first equality holds since we assume E
[
h2(W )

]
= 1, the second equality comes from the Cr

inequality (which states that E [|X + Y |r] ≤ Cr(E [|X|r] + E [|Y |r]) with Cr = 1 for 0 < r ≤ 1 and
Cr = 2r−1 for r ≥ 1). For the last inequality, following the same procedure as (A.8) and using the fact that
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higher moments dominate lower moments, we obtain the finiteness when assuming E
[
Y 6
]
,E
[
µ6(W )

]
<∞,

which holds under the assumed moment conditions. Now by applying the Berry–Esseen bound in Lemma
A.2 with X̄ = R̄− E [Y h(W )] and sσ = Σ̂11, we obtain (A.10).

Case (III): since Var (Y h(W )) = 0,Var (Var (h(W ) |Z)) > 0, we have

Lαn(µ) = max

{
E [Y h(W )]√

V̄
− zαs√

n
, 0

}
, where s2 =

1

V̄

(
E [Y h(W )]

2V̄

)2

Σ̂22.

Note E[Y h(W )]√
V̄

is a nonlinear function of the moment estimators, so the following asymptotic normality

result is a direct consequence of the multivariate delta method,

√
n

(
E [Y h(W )]√

V̄
− f(µ)

)
d→ N

(
0, σ̃2

0

)
,

where σ̃2
0 = H2(0) will be specified later (see the definition of H2(x) in (A.18)) and s2 in Lαn(µ) is a

consistent estimator of it. To establish the rate 1/
√
n, the classical Berry–Esseen result needs to be

extended for nonlinear statistics. Note that case (IV) involves a nonlinear statistic too, and is a bit more
complicated. Hence we focus on case (IV) and omit the very similar proof for case (III).

Case (IV): we have

Lαn(µ) = max{ R̄√
V̄
− zαs√

n
, 0}, where s2 =

1

V̄

[(
R̄

2V̄

)2

Σ̂22 + Σ̂11 −
R̄

V̄
Σ̂12

]
.

and denote T :=
(

R̄√
V̄
− f(µ)

)
/s. Under specific moment conditions, we will establish a Berry–Esseen-type

bound below:

sup
t∈R

∣∣P (√nT ≤ t)− Φ(t)
∣∣ = O

(
1√
n

)
(A.13)

where Φ(t) denotes the CDF of the standard normal distribution.
The proof relies on a careful analysis of nonlinear statistics. We take advantage of the results in a recent

paper (Pinelis et al., 2016) that establishes Berry–Esseen bounds with rate 1/
√
n for the multivariate delta

method when the function applied to the sample mean estimator satisfies certain smoothness conditions.
And the constants in the rate depend on the distribution only through several moments. Specifically,
consider U,U1, . . . , Un to be i.i.d. random vectors on a set X and a functional H : X → R which satisfies
the following smoothness condition:

Condition A.3. There exists ε,Mε > 0 and a continuous linear functional L : X → R such that

|H(x)− L(x)| ≤Mε‖x‖2 for all x ∈ X with ‖x‖ ≤ ε (A.14)

We can think of L as the first-order Taylor expansion of H. This smoothness condition basically requires
H to be nearly linear around the origin and can be satisfied if its second derivatives are bounded in the
small neighbourhood {x : ‖x‖ ≤ ε} . Before stating Pinelis et al. (2016)’s result (we change their notation
to avoid conflicts with the notation in the main text of this paper), define Ū := 1

n

∑n
i=1 Ui and

σ̃ := ‖L(U)‖2, νp := ‖U‖p, ςp :=
‖L(U)‖p

σ̃
,

where for a given random vector U = (U1, · · · , Ud) ∈ Rd, ‖U‖p is defined as ‖U‖p = (E [‖U‖p])1/p with

‖u‖p :=
∑d

j=1 |uj |p.
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Theorem A.4. Pinelis et al. (2016, Theorem 2.11) Let X be a Hilbert space, let H satisfy Condition A.3
for some ε > 0, and assume E [U ] = 0, σ̃ > 0 and ν3 <∞, then

sup
t∈R

∣∣∣∣P(√nH(Ū)

σ̃
≤ t
)
− Φ(t)

∣∣∣∣ ≤ C√
n

(A.15)

where the constant C depends on the distribution of U only through σ̃, ν2, ν3, ς3 (it also depends on the
smoothness of the functional H through ε,Mε).

Note that the above result is a generalization of the standard Berry–Esseen bound. σ̃2 is the variance
term of the asymptotic normal distribution. ς3 is closely related to the term ρ/σ2 in (A.11). The quantities
σ̃, ν2, ν3, ς3 involved in the constant C only involve up to third moments, which is in accordance with the
standard Berry–Esseen bound in Lemmas A.1 and A.2. Note the existence of σ̃, ν2, ς3 is implied by ν3 <∞
due to the fact that lower moments can be controlled by higher moments, together with the linearity
of the functional L. To apply Theorem A.4 to our problem, we first let X = R5 and random vectors

{Ui}ni=1 = {(Ui1, Ui2, Ui3, Ui4, Ui5)}ni=1
i.i.d.∼ U0 = (U01, U02, U03, U04, U05) to be

Ui1 = Ri − E [Y h(W )] , Ui2 = Vi − E
[
h2(W )

]
, (A.16)

Ui3 = Y 2
i h

2(Wi)− E
[
Y 2h2(W )

]
, Ui4 = (Var (h(Wi) |Zi))2 − E

[
(Var (h(W ) |Z))2

]
,

Ui5 = RiVar (h(Wi) |Zi)− E [Y h(W )Var (h(W ) |Z)] .

Recall the definition Ri = Yi
(
µ(Xi, Zi) − E [µ(X,Zi) |Zi]

)
and Vi = Var (µ(Xi, Zi) |Zi), hence we have

E [Ui] = E [U0] = 0. Let Ū = (Ū1, Ū2, Ū3, Ū4, Ū5) = 1
n

∑n
i=1 Ui ∈ R5, recall the definition T =

(
R̄√
V̄
− f(µ)

)
/s

where s2 = 1
V̄

[(
R̄
2V̄

)2
Σ̂22 + Σ̂11 − R̄

V̄
Σ̂12

]
, then T can be rewritten as

T = H(Ū) :=
H1(Ū1, Ū2)√

H2(Ū)
,

where H1(Ū1, Ū2) and H2(Ū) are defined as

H1(Ū1, Ū2) :=
Ū1 + E [Y h(W )]√
Ū2 + E [h2(W )]

− E [Y h(W )]√
E [h2(W )]

, (A.17)

H2(Ū) :=
1

Ū2 + E [h2(W )]

[(
Ū1 + E [Y h(W )]

2(Ū2 + E [h2(W )])

)2 (
Ū4 + E

[
(Var (h(W ) |Z))2

]
− (Ū2 + E

[
h2(W )

]
)2
)

+ Ū3 + E
[
Y 2h2(W )

]
− (Ū1 + E [Y h(W )])2

− Ū1 + E [Y h(W )]

Ū2 + E [h2(W )]

(
Ū5 + E [Y h(W )Var (h(W ) |Z)]− (Ū1 + E [Y h(W )])(Ū2 + E

[
h2(W )

]
)
) ]
.

(A.18)

Note H(x) = H(x1, x2, x3, x4, x5) : R5 → R is defined by replacing the above Ū = (Ū1, Ū2, Ū3, Ū4, Ū5)
by x := (x1, x2, x3, x4, x5) respectively. When x2 > −E

[
h2(W )

]
or H2(x) = 0, H(x) is set to be 0. If we

can verify the conditions for T = H(Ū), Theorem A.4 implies the following,

sup
t∈R

∣∣P (√nT ≤ tσ̃)− Φ(t)
∣∣ ≤ C√

n
,

where σ̃ = ‖L(U0)‖2 > 0 (we will define L(x) shortly and subsequently show σ̃ = 1). First we need to
verify Condition A.3, i.e., there exists ε,Mε > 0 and a continuous linear functional L : R5 → R such that

|H(x)− L(x)| ≤Mε‖x‖2 for all x ∈ R5 with ‖x‖ ≤ ε. (A.19)
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Second, we will show σ̃, ν3, and ς3 are finite under the stated moment conditions.
Regarding the smoothness condition, consider the first order Taylor expansion of H at zero,

H(0) +
∂H

∂x1
(0)x1 +

∂H

∂x2
(0)x2 +

∂H

∂x3
(0)x3 +

∂H

∂x4
(0)x4 +

∂H

∂x5
(0)x5.

Note that for H(0) = H1(0)/
√
H2(0), we have H1(0) = 0 and H2(0) > 0 (denote H2(0) := σ̃2

0 and we will
show it is positive over the course of derivations from (A.22) to the end of the proof). After simplifying
the expression of H2(0), we give the explicit form of σ̃2

0 below:

σ̃2
0 =

1

E [h2(W )]

[(
E [Y h(W )]

2(E [h2(W )])

)2

Var (Var (h(W ) |Z)) + Var (Y h(W ))

− E [Y h(W )]

E [h2(W )]
Cov (Y h(W ),Var (h(W ) |Z))

]
.

(A.20)

Using the chain rule of derivatives, we have for m ∈ [5],

∂H

∂xm
(0) =

∂H1

∂xm
(0)/

√
H2(0)− H1(0)

2H2(0)3/2
· ∂H2

∂xm
(0) =

∂H1

∂xm
(0)/σ̃0.

Since H1(x1, x2) only depends on x1, x2, we need only evaluate two partial derivatives to compute the first
order Taylor expansion of H at zero, yielding

1

σ̃0

(
1√

E [h2(W )]
x1 −

E [Y h(W )]

2(
√
E [h2(W )])3

x2

)
.

Let L(x) = L(x1, x2) be the above linear function, we have L(0) = 0. Note that when ε = E
[
h2(W )

]
/2,

min
‖x‖≤ε

(x2 + E
[
h2(W )

]
) = E

[
h2(W )

]
− ε > 0.

Since H2(x) is continuous around zero and H2(0) > 0 (which will be shown in the following proof), we can
similarly choose ε sufficiently small such that min‖x‖≤εH2(x) > 0. Recall H(x) = H1(x)/

√
H2(x), where

H1, H2 are defined in (A.17) and (A.18), so H(x) is continuous on {x : ‖x‖ ≤ ε}. Furthermore, its second
partial derivatives exist and are continuous over the compact set {x : ‖x‖ ≤ ε}, thus are also bounded,
which implies that there exists Mε > 0 such that (A.19) holds.

As for σ̃, ν3, and ς3, we will now establish the following moment bounds:

0 < σ̃ := ‖L(U0)‖2 <∞,
ν2 := ‖U0‖2, ν3 := ‖U0‖3 <∞,

ς3 :=
‖L(U0)‖3

σ̃
<∞.

Note that ν3
3 = ‖U0‖33 = E

[
|U01|3

]
+ E

[
|U02|3

]
+ E

[
|U03|3

]
+ E

[
|U04|3

]
+ E

[
|U05|3

]
and

(ς3σ̃)3 = E
[
|L(U0)|3

]
=

1

σ̃3
0

E

∣∣∣∣∣ 1√
E [h2(W )]

U01 −
E [Y h(W )]

2(
√
E [h2(W )])3

U02

∣∣∣∣∣
3


≤ 23−1

σ̃3
0

(
1

(
√
E [h2(W )])3

E
[
|U01|3

]
+

(E [Y h(W )])3

8(
√
E [h2(W )])9

E
[
|U02|3

])
(A.21)

where the inequality holds as a result of the Cr inequality. Due to the fact that the finiteness of higher
moments implies that of lower moments and (A.21), we only need to show
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(i) E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
<∞,

(ii) σ̃2
0 = H2(0) > 0,

(iii) σ̃2 = ‖L(U0)‖2 > 0,

under the stated moment conditions. For (iii), actually we will show σ̃2 = 1. Starting with (i), we have

E
[
|U02|3

]
= E

[
|Ui2|3

]
= E

[∣∣Vi − E
[
h2(W )

]∣∣3]
≤ 23−1

(
E
[
|Var (µ(Wi) |Zi)|3

]
+ (E

[
h2(W )

]
)3
)

≤ 23−1
(
E
[
E
[
µ6(Wi) |Zi

]]
+ (E

[
h2(W )

]
)3
)
<∞,

where the first inequality comes from the Cr inequality, the second holds by Jensen’s inequality, and the
third inequality holds due to the tower property of conditional expectation and the assumed moment
condition E

[
µ6(W )

]
<∞. For the term E

[
|U01|3

]
, we have

E
[
|U01|3

]
= E

[
|Ui1|3

]
= E

[
|Ri − E [Y h(W )]|3

]
≤ 23−1

(
E
[
|Yi(µ(Wi)− E [µ(Wi) |Zi])|3

]
+ (E [Y h(W )])3

)
= 23−1

(
E[|Y 3h3(W )|] + (E [Y h(W )])3

)
<∞,

where the first inequality holds due to the Cr inequality and the second inequality holds since we can
upper-bound E[|Y 3h3(W )|] as below by assuming E

[
Y 6
]
<∞ and E

[
µ6(W )

]
<∞,

E[|Y 3h3(W )|] ≤
√
E[Y 6]E[(µ(W )− E[µ(W ) |Z])6]

≤
√
E[Y 6] · 25(E[µ6(W )] + E[(E[µ(W ) |Z])6])

≤
√
E[Y 6] · 25(E[µ6(W )] + E[E[µ6(W ) |Z]])

≤ 8
√

E[Y 6]E[µ6(W )],

where for the first three inequalities, we apply the Cauchy–Schwarz inequality, Cr inequality, and Jensen’s
inequality, respectively. The same approach and inequalities can be used for the other three terms i.e., we
have E

[
|U03|3

]
,E
[
|U04|3

]
,E
[
|U05|3

]
< ∞. Note that U03, U04, and U05 involve higher-order polynomials

of Yih(Wi) and Var (h(Wi) |Zi) than U01, U02, and thus require assuming bounded 12th moments to ensure
the boundedness of their third absolute moments, hence the assumptions in Theorem 2.3 that E

[
Y 12

]
<∞

and E
[
µ12(W )

]
<∞.

According to the definitions, replacing h(W ) by the scaled version h(W )/
√
E [h2(W )] will not change

the value of f(µ), T nor σ̃2, thus we can assume E
[
h2(W )

]
= 1 without loss of generality. Regarding (ii)

and (iii): first we expand σ̃2
0 as

σ̃2
0σ̃

2 = H2(0)‖L(U0)‖2 =
1

E [h2(W )]
E

[(
Ui1 −

E [Y h(W )]

2E [h2(W )]
Ui2

)2
]
, (A.22)

and obtain the following concise expression

σ̃2
0σ̃

2 = E

[(
Ui1 −

E [Y h(W )]

2
Ui2

)2
]

= E

[(
Ri − E [Y h(W )]− E [Y h(W )]

2
(Var (h(Wi) |Zi)− 1)

)2
]

= E
[
(A+B)2

]
, (A.23)
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where the first and the second equality simply come from (A.16) and E
[
h2(W )

]
= 1 and the third equality

is by rearranging and the terms A,B are defined as below:

A := Yih(Wi)− E [Yih(Wi) |Zi] , (A.24)

B := E [Yih(Wi) |Zi]− E [Y h(W )]− E [Y h(W )]

2
(Var (h(Wi) |Zi)− 1). (A.25)

Now we can expand (A.23) as

E
[
(A+B)2

]
= E

[
E
[
(A+B)2 |Zi

]]
= E

[
E
[
A2 |Zi

]
− 2B E [A |Zi] +B2

]
= E

[
E
[
A2 |Zi

]
+B2

]
≥ E [Var (Y h(W ) |Z)] , (A.26)

where the first equality comes from the tower property of conditional expectation, the second equality
holds since B ∈ A (Zi) and the third equality holds due to E [A |Zi] = 0. (A.26) gives one lower bound for
σ̃2. To proceed in a different way, we equivalently write down

σ̃2
0σ̃

2 = E

[(
Ui1 −

E [Y h(W )]

2
Ui2

)2
]

= E

[((
1,−E [Y h(W )]

2

)
(Ui1, Ui2)>

)2
]

= a>ΣUa, (A.27)

where a> :=
(

1,−E[Y h(W ]
2

)
and ΣU is the covariance matrix for random vector Ui, which can be explicitly

written as

ΣU =

(
Var (Y h(W )) Cov (Y h(W ),Var (h(W ) |Z))

Cov (Y h(W ),Var (h(W ) |Z)) Var (Var (h(W ) |Z))

)
.

Note the expression of σ̃2
0 in (A.20) and E

[
h2(W )

]
= 1 as assumed, we immediately have σ̃ = 1 since

σ̃2
0σ̃

2 = a>ΣUa = H2(0) = σ̃2
0. Now it suffices to show σ̃0 > 0. Since we are in the case where both

Var (Y h(W )) and Var (Var (h(W ) |Z)) are positive, ΣU will be positive definite if Y h(W ) is not a linear
function of Var (h(W ) |Z). Having (A.26) and (A.27) in hand, we prove σ̃0 > 0 as follows.

When E [Var (Y h(W ) |Z)] > 0, we are done. If E [Var (Y h(W ) |Z)] = 0 holds, then σ̃2
0 = a>ΣUa = 0

implies the degeneracy of ΣU since the vector a is nonzero. It suffices to show it is impossible to have ΣU

degenerate when E [Var (Y h(W ) |Z)] = 0. Note that in the degenerate case, Y h(W ) is a linear function of
Var (h(W ) |Z), i.e., Y h(W ) = cVar (h(W ) |Z) + d for some constants c, d, we then obtain

Var (Y h(W ) |Z) = Var (cVar (h(W ) |Z) + d |Z) = c2Var (Var (h(W ) |Z)) > 0

where we make use of the fact Var (Var (h(W ) |Z)) > 0 and Var (Y h(W )) > 0 (thus c2 > 0) by definition
of case (IV). The above result contradicts the assumption E [Var (Y h(W ) |Z)] = 0. This finishes showing
the positiveness of σ̃0, thus verifying (ii) and (iii). Therefore, the Berry–Esseen-type bound in (A.13) is
established, which completes the proof for case (IV). Thus, the asymptotic coverage validity with a rate of
1/
√
n for the lower confidence bounds produced by Algorithm 1 has been established.

A.2 Proofs in Section 2.3

Proof of Theorem 2.4. Similarly as in the proof of Theorem 2.3, we immediately have coverage validity
when µ(X) ∈ A (Z). Otherwise, it suffices to show

inf
K>1

P (Lαn(µ) ≤ f(µ)) ≥ 1− α−O(1/
√
n). (A.28)
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Recall that the proof A.1.2 considers 4 different cases then deals with them separately. Now the conditional
quantities in Algorithm 1 are replaced by their Monte Carlo estimators RKi , V

K
i as defined below.

RKi = Yi

(
µ(Xi, Zi)−

1

K

K∑
k=1

µ(X
(k)
i , Zi)

)
, V K

i =
1

K − 1

K∑
k=1

(
µ(X

(k)
i , Zi)−

1

K

K∑
k=1

µ(X
(k)
i , Zi)

)2

,

(A.29)
for fixed K > 1. Essentially we can conduct similar analysis, but to avoid lengthy derivations, we assume
the moment condition E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0 and thus focus on this specific case.

First notice a direct consequence of the multivariate delta method is the following asymptotic normality
result:

√
n

 1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)

 d→ N
(
0, σ̃2

0

)
.

And the unknown variance σ̃2
0 can be replaced by its consistent estimator. To establish (A.28), we follow

the proof strategy of Theorem 2.3. Specifically, we apply the Berry–Esseen bound for nonlinear statistics
Theorem A.4.

Again we first introduce some notations: let random vectors {Ui}ni=1 = {(Ui1, Ui2, Ui3, Ui4, Ui5)}ni=1
i.i.d.∼

U0 = (U01, U02, U03, U04, U05) to be

Ui1 = RKi − E [Y h(W )] , Ui2 = V K
i − E

[
h2(W )

]
, (A.30)

Ui3 = (RKi )2 − E
[
(RKi )2

]
, Ui4 = (V K

i )2 − E
[
(V K
i )2

]
, Ui5 = RKi V

K
i − E

[
RKi V

K
i

]
.

Note by the construction of the null samples, X
(k)
i satisfy the following properties:

{X(k)
i }

K
k=1 ⊥⊥ (Xi, Yi) | Zi, (A.31)

{X(k)
i }

K
k=1 | Zi

i.i.d.∼ Xi | Zi, (A.32)

thus we have

E

[
1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

∣∣∣∣∣Zi
]

= E [µ(Xi, Zi) |Zi] , (A.33)

E

 1

K − 1

K∑
k=1

(
µ(X̃

(k)
i , Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)2
∣∣∣∣∣∣Zi
 = Var (µ(Xi, Zi) |Zi) , (A.34)

which further implies E [U0] = 0. Specifically, we have the following derivation

E [Ui2] = E
[
V K
i − E

[
h2(W )

]]
= E [Var (µ(Xi, Zi) |Zi)]− E

[
h2(W )

]
= E [Var (h(Xi, Zi) |Zi)]− E

[
h2(W )

]
= E

[
E
[
h2(Xi, Zi) |Zi

]
− (E [h(Xi, Zi) |Zi])2

]
− E

[
h2(W )

]
= 0,

where the second equality holds due to (A.34), the third equality holds by the definition of h(W ) = h(X,Z),
and the last equality holds as a result of E [h(Xi, Zi) |Zi] = 0 in (A.4) and the tower property of conditional
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expectation. Next,

E [Ui1] = E
[
RKi − E [Y h(W )]

]
= E

[
Yi

(
µ(Xi, Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)]
− E [Y h(W )]

= E [Yiµ(Wi)]− E

[
E [Yi |Zi]E

[
1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

∣∣∣∣∣Zi
]]
− E [Y h(W )]

= E [Yiµ(Wi)]− E [E [Yi |Zi]E [µ(Xi, Zi) |Zi]]− E [Y h(W )]

= E [Yiµ(Wi)]− E [YiE [µ(Xi, Zi) |Zi]]− E [Y h(W )] = 0,

where the first and second equality follow by the definition, the third equality holds due to (A.31), the
fourth equality holds due to (A.33), the fifth equality comes from the tower property of total expectation
and the last one is by the definition of h(W ). Straightforwardly, E [Ui3] = E [Ui4] = E [Ui5] = 0. Now we
denote Ū = (Ū1, Ū2, Ū3, Ū4, Ū5) = 1

n

∑n
i=1 Ui and rewrite the following expression,

1

s

 1
n

∑n
i=1R

K
i√

1
n

∑n
i=1 V

K
i

− f(µ)

 := H(Ū) :=
H1(Ū1, Ū2)√

H2(Ū)
,

where s is similarly defined as in Algorithm 1 except that Ri, Vi are replaced by RKi , V
K
i . Here H(x) =

H(x1, x2, x3, x4, x5) : R5 → R is the same as in the proof of Theorem 2.3. Therefore the smoothness
condition, i.e., Condition (A.3), holds by the same argument as in Appendix A.1.2. To apply Theorem
A.4, it remains to verify the following moment bounds

0 < σ̃ := ‖L(U0)‖2 <∞,
ν2 := ‖U0‖2, ν3 := ‖U0‖3 <∞,

ς3 :=
‖L(U0)‖3

σ̃
<∞.

Note that ν3
3 = ‖U0‖33 = E

[
|U01|3

]
+ E

[
|U02|3

]
+ E

[
|U03|3

]
+ E

[
|U04|3

]
+ E

[
|U05|3

]
and

(ς3σ̃)3 = E
[
|L(U0)|3

]
= E

∣∣∣∣∣ 1√
E [h2(W )]

U01 −
E [Y h(W )]

2(
√

E [h2(W )])3
U02

∣∣∣∣∣
3


≤ 23−1

(
A

1

(
√
E [h2(W )])3

E
[
|U01|3

]
+

(E [Y h(W )])3

8(
√

E [h2(W )])9
E
[
|U02|3

])
, (A.35)

where the inequality holds as a result of the Cr inequality. Due to the fact that the finiteness of higher
moments implies that of lower moments and (A.35), we only need to show

(i) E
[
|U01|3

]
, E
[
|U02|3

]
, E
[
|U03|3

]
, E
[
|U04|3

]
, E
[
|U05|3

]
<∞

(ii) σ̃2
0 = H2(0) > 0

(iii) σ̃2 = ‖L(U0)‖2 > 0

under the stated moment conditions. For (iii), we can show σ̃2 = 1 in the same way as in the proof
of Theorem 2.3. In the following, we will deal with the first two conditions. Note the definition of
U0 = (U01, U02, U03, U04, U05) depends on K, and we are going to verify (i) and (ii) for arbitrary K > 1.
Recalling the definition of U02 in (A.30), we have

E
[
|U02|3

]
= E

[
|Ui2|3

]
= E

[
|V K
i − E

[
h2(W )

]
|3
]

≤ 23−1
(
E
[
|V K
i |3

]
+ (E

[
h2(W )

]
)3
)
,
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where the inequality holds due to the Cr inequality. Expanding V K
i , we obtain

E
[
|V K
i |3

]
= E

∣∣∣∣∣∣ 1

K − 1

K∑
k=1

(
µ(X̃

(k)
i , Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)2
∣∣∣∣∣∣
3 (A.36)

=
1

(K − 1)3
E

∣∣∣∣∣∣
K∑
k=1

µ2(X̃
(k)
i , Zi)−K

(∑K
k=1 µ(X̃

(k)
i , Zi)

K

)2
∣∣∣∣∣∣
3

≤ 23−1

(K − 1)3
E

∣∣∣∣∣
K∑
k=1

µ2(X̃
(k)
i , Zi)

∣∣∣∣∣
3
+

23−1K3

(K − 1)3
E

(∑K
k=1 µ(X̃

(k)
i , Zi)

K

)6


≤ 25 E

∣∣∣∣∣
∑K

k=1 µ
2(X̃

(k)
i , Zi)

K

∣∣∣∣∣
3
+ 25 E

(∑K
k=1 µ(X̃

(k)
i , Zi)

K

)6


= 25 (II1 + II2), (A.37)

where the second equality is simply by expanding and rearranging and the first inequality comes from the
Cr inequality. For the last inequality, we use the fact K > 1 thus K ≤ 2(K − 1). Now the problem is
reduced to bounding the two terms in (A.37). And by (A.36) and the fact

E
[
µ(X̃

(k)
i , Zi)

∣∣∣Zi] = E

[
1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

∣∣∣∣∣Zi
]
, ∀ k = 1, · · · ,K,

we can assume E
[
µ(X̃

(k)
i , Zi)

∣∣∣Zi] = 0, k = 1, · · · ,K without loss of generality. We further write II1, II2

as below

II1 = E

E
∣∣∣∣∣
∑K

k=1 µ
2(X̃

(k)
i , Zi)

K

∣∣∣∣∣
3
∣∣∣∣∣∣Zi
 , II2 = E

E
(∑K

k=1 µ(X̃
(k)
i , Zi)

K

)6
∣∣∣∣∣∣Zi
 . (A.38)

Conditional on Zi, µ(X̃
(k)
i , Zi), k = 1, · · · ,K are i.i.d. mean zero random variables, hence we can apply

the extension of the Bahr–Esseen inequality in Dharmadhikari et al. (1969) to obtain

E

∣∣∣∣∣
K∑
k=1

µ2(X̃
(k)
i , Zi)

∣∣∣∣∣
3
∣∣∣∣∣∣Zi
 ≤ c3,K

K∑
k=1

E
[
µ6(X̃

(k)
i , Zi)

∣∣∣Zi] , (A.39)

E

( K∑
k=1

µ(X̃
(k)
i , Zi)

)6
∣∣∣∣∣∣Zi
 ≤ c6,K

K∑
k=1

E
[
µ6(X̃

(k)
i , Zi)

∣∣∣Zi] . (A.40)

Note for generic p ≥ 2 and n, the term cp,n is defined as

cp,n = np/2−1 p(p− 1)

2
max{1, 2p−3}

[
1 + 2p−1D

(p−2)/2m
2m

]
where the integer m satisfies 2m ≤ p < 2m+ 2, and

D2m =
m∑
t=1

t2m−1

(t− 1)!
.

We then can simply bound c3,K and c6,K by C ′K1/2 and C ′′K2 for some universal constants C ′, C ′′ which
do not depend on K. Combining these with (A.38), (A.39), and (A.40) yields the following

II1 ≤
C ′

K3/2
E
[
µ6(X̃

(k)
i , Zi)

]
, II2 ≤

C ′′

K3
E
[
µ6(X̃

(k)
i , Zi)

]
.
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Under the moment condition E
[
µ6(X,Z)

]
<∞, we finally obtain E

[
|U02|3

]
<∞ for arbitrary K > 1. As

for the term U01, we apply the same bounding strategy to E
[
|U01|3

]
:

E
[
|U01|3

]
= E

[
|Ui1|3

]
= E

[
|RKi − E [Y h(W )] |3

]
≤ 23−1

(
E
[
|RKi |3

]
+ (E [Y h(W )])3

)
≤ 23−1

(√
E
[
Y 6
i

]√
E
[
(GKi )6

]
+ (E [Y h(W )])3

)
,

where the equality is by the definition of U02 in (A.30), the first inequality holds due to the Cr inequality
and the second inequality is a result of applying the Cauchy–Schwarz inequality to Y 3

i and (GKi )3, where

GKi = µ(Xi, Zi)− 1
K

∑K
k=1 µ(X

(k)
i , Zi). Under the moment condition E

[
Y 6
]
,E
[
µ6(X,Z)

]
<∞, it suffices

to bound E
[
(GKi )6

]
. Simple expansion gives

E
[
(GKi )6

]
= E

∣∣∣∣∣µ(Xi, Zi)−
1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

∣∣∣∣∣
6
 (A.41)

≤ 23−1

E
[
µ6(Xi, Zi)

]
+ E

∣∣∣∣∣ 1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

∣∣∣∣∣
6
 , (A.42)

where the inequality holds due to the Cr inequality. Then using a similar strategy as bounding the term
II2, i.e., applying the extension of the Bahr–Esseen inequality, we have

E
[
(GKi )6

]
≤ C ′′′

K3
E
[
µ6(X̃

(k)
i , Zi)

]
for some universal constant C ′′′. Similarly to the proof of Theorem 2.3, nearly identical derivations as in
bounding E

[
|U01|3

]
and E

[
|U02|3

]
suffice to show E

[
|U03|3

]
,E
[
|U04|3

]
,E
[
|U05|3

]
<∞ under the stronger

moment boundedness conditions E
[
Y 12

]
<∞,E

[
µ12(W )

]
<∞ stated in Theorem 2.4.

Regarding (ii), first rewrite GKi and V K
i as below:

GKi = h(Wi)−
1

K

K∑
k=1

h(X̃
(k)
i , Zi), (A.43)

V K
i = Var (h(Wi) |Zi) +

1

K − 1

K∑
k=1

(
h(X̃

(k)
i , Zi)−

1

K

K∑
k=1

h(X̃
(k)
i , Zi)

)2

−Var (h(Wi) |Zi) , (A.44)

where we make use of the fact E
[
µ(X̃

(k)
i , Zi) |Zi

]
= E [µ(Xi, Zi) |Zi] , k = 1, · · · ,K and h(X̃

(k)
i , Zi) =

µ(X̃
(k)
i , Zi)− E

[
µ(X̃

(k)
i , Zi) |Zi

]
, then replace U01, U02 by Ui1, Ui2 and expand σ̃2

0 as

σ̃2
0 = σ̃2

0σ̃
2 = H2(0)‖L(U0)‖2 =

1

E [h2(W )]
E

[(
Ui1 −

E [Y h(W )]

2(E [h2(W )]
Ui2

)2
]
. (A.45)

According to the definition (A.30) and the expressions in (A.43) and (A.44), replacing h(W ) by the
scaled version h(W )/

√
E [h2(W )] will not change the value of of f(µ), T , σ̃2, nor σ̃2

0, thus we can assume
E
[
h2(W )

]
= 1 without loss of generality and concisely write down the following expression

σ̃2
0 = E

[(
Ui1 −

E [Y h(W )]

2
Ui2

)2
]

= E

[(
YiG

K
i − E [Y h(W )]− E [Y h(W )]

2
(V K
i − 1)

)2
]

= E
[
(III1 − III2)2

]
, (A.46)
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where the first and the second equality simply come from (A.30) and E
[
h2(W )

]
= 1 and the third equality

is by rearranging and the terms III1, III2 are defined as below:

III1 := − E [Y h(W )]

2
(Var (h(Wi) |Zi)− 1) + Yih(Wi)− E [Y h(W )]

III2 := Yi

(
1

K

K∑
k=1

h(X̃
(k)
i , Zi)

)

+
E [Y h(W ]

2

 1

K − 1

K∑
k=1

(
h(X̃

(k)
i , Zi)−

1

K

K∑
k=1

h(X̃
(k)
i , Zi)

)2

−Var (h(Wi) |Zi)

 .

Notice that the definition of h(X̃
(k)
i , Zi) and (A.34) together imply

E [III2 |Xi, Yi] = 0. (A.47)

Applying the tower property of conditional expectation to (A.46) then expanding yield the following
expression:

σ̃2
0 = E

[
E
[(

III2
1 + III2

2 − 2III1III2

)
|Xi, Yi

]]
= E

[
III2

1 + E
[
III2

2 |Xi, Yi
]
− 2III1E [III2 |Xi, Yi]

]
= E

[
III2

1 + E
[
III2

2 |Xi, Yi
]]

≥ E
[
III2

1

]
,

where the second equality holds since III1 ∈ A (Xi, Yi), the third equality comes from (A.47). Note that
III1 equals A + B, where A,B are defined as (A.24) and (A.25) in the proof of Theorem 2.3. Then
according to those derivations, we have E

[
III2

1

]
> 0 under the assumed condition E [Var (Y h(W ) |Z)] =

E [Var (Y (µ(X,Z)− E [µ(X,Z) |Z]) |Z)] > 0. This finishes showing the positiveness of σ̃0. Therefore, we
obtain the Berry–Esseen bound for nonlinear statistics by applying Theorem A.4. Finally we conclude the
asymptotic coverage with a rate of n−1/2 for any given K > 1.

A.3 Proofs in Section 2.4

Proof of Theorem 2.5. First we write

I − Lnα(µn) = I − f(µn) + f(µn)− Lnα(µn),

where f(µn) is defined as

f(µn) =:
E [Cov(µ?(X,Z), µn(X,Z) |Z)]√

E [Var(µn(X,Z) |Z)]
.

Then it suffices to separately show

I − f(µn) = Op

(
inf

µ′∈Sµn
E
[
(µ′n(X,Z)− µ?(X,Z))2

])
(A.48)

f(µn)− Lnα(µn) = OP

(
n−1/2

)
(A.49)

Recall the definitions in Algorithm 1, when µ(X,Z) ∈ A (Z), we have f(µn) = Lnα(µn) = 0, hence in the
following we focus on the case where µ(X,Z) /∈ A (Z). Note we have

Lnα(µn) ≥ R̄√
V
− zαs√

n
:= T − zαs√

n
,
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then since f(µn)− Lnα(µn) ≤ |T − f(µn)|+ zαs√
n

, it suffices to show

|T − f(µn)| = OP

(
n−1/2

)
, s = OP (1).

When conditioning on µn, showing the above is quite straightforward: in the proof of Theorem 2.3, we
establish the asymptotic normality of T and show s converges in probability to σ̃ (which is the variance
of the asymptotic normal distribution, as defined in (A.22). Unconditionally, we need slightly more work
and the stated uniform moment conditions. The proof proceeds through verifying the following: note that
by definition of bounded in probability, |T − f(µn)| = OP

(
n−1/2

)
says for any ε > 0, there exists M for

which
sup
n
P (
√
n|T − f(µn)| > M) ≤ ε.

It suffices to prove for any µn ∈ U := {µ : E
[
µ8(X,Z)

]
/(E [Var (µ(X,Z) |Z)])4 ≤ C},

sup
n

P
(√
n|T − f(µn)| > M

)
≤ ε, (A.50)

and the choice of M (when fixing ε) is uniform over µn ∈ U . Define the random variable Gµn by Gµn
d∼

N
(
0, σ̃2(µn)

)
, where σ̃2(µn) denotes the variance σ̃2 with the input of Algorithm 1 being µn, then we have

P
(√
n|T − f(µn)| > M

)
≤ P (|Gµn | > M) + ∆ (A.51)

where ∆ is defined as

∆ := sup
µn∈U

sup
M>0

∣∣P (√n|T − f(µn)| > M
)
− P (|Gµn | > M)

∣∣ (A.52)

Recall the derivations in the proof of Theorem A.1.2 where we assume E
[
h2(W )

]
= 1 without loss of

generality (since we can always scale h by
√
E [h2(W )]), here we have a sequence of working regression

functions µn which does not admit the same scaling. But the stated moment conditions E[Y 8] < ∞ and
E
[
µ8
n(X,Z)

]
/(E [Var (µn(X,Z) |Z)])4 ≤ C ensure a uniform moment bound after scaling, hence for the

following we can assume E
[
h2
n(W )

]
= 1. Based on the definition of σ̃2 in (A.22) and the derivations in

the proof of Theorem A.1.2, we have σ̃2(µn) uniformly bounded. Denote this upper bound by σ̃2
0, we then

obtain
sup
µn∈U

P (|Gµn | > M) ≤ P (|G0| > M) (A.53)

where G0
d∼ N

(
0, σ̃2

0

)
. According to the proof of Theorem 2.3, we have the following Berry-Esseen bound

sup
M>0

∣∣P (√n|T − f(µn)| > M
)
− P (|Gµn | > M)

∣∣ = O

(
1√
n

)
To show the constant in the above rate of 1√

n
is uniformly bounded, we first notice that

inf
µn∈U

σ̃2(µn) ≥ inf
µn∈U

E [Var (Y hn(W ) |Z)] (A.54)

≥ inf
µn∈U

E [Var (Y hn(W ) |X,Z)] (A.55)

= inf
µn∈U

E
[
h2
n(W )Var (Y |X,Z)

]
(A.56)

≥ τ > 0 (A.57)

where the first inequality holds due to (A.26), the second inequality holds as a result of the law of total condi-
tional variance, the last equality holds by the assumption that E

[
h2
n(W )

]
= 1 and the moment lower bound

condition Var (Y |X,Z) ≥ τ > 0. Assuming E[Y 8] < ∞ and E
[
µ8
n(X,Z)

]
/(E [Var (µn(X,Z) |Z)])4 ≤ C,
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we can uniformly control the higher moments involved in (A.4) (i.e. ν2, ν3, ς3), therefore establish the rate
of 1√

n
in (A.52):

∆ = O

(
1√
n

)
.

Combining this with (A.51) and (A.53), we have

sup
µn∈U

P
(√
n|T − f(µn)| > M

)
≤ P (|G0| > M) +

C ′√
n

for some constant C ′ depending on C, τ and E
[
Y 8
]
. Therefore we obtain (A.50) and the choice of M

can be universally chosen over µn ∈ U , which finally establishes |T − f(µn)| = OP
(
n−1/2

)
. Using similar

strategies, we can prove s = OP (1). Now we proceed to prove (A.48), first it can be simplified into the
following form due to (A.5) and (A.7),

I − f(µn) =
√
E[(h?)2(W )]− E [hn(W )h?(W )]√

E [h2
n(W )]

(A.58)

where hn(W ) = µn(W ) − E [µn(W ) |Z] and h? are defined the same way. Remark we have 0/0 = 0 by
convention for (A.58). We also find it is more convenient to work with f(µ̄n) (note f(µn) = f(µ̄n)), recall
that the definition of µ̄n:

µ̄n(x, z) :=

√
I

E [h2
n(W )]

(µn(x, z)− E [µn(X,Z) |Z = z]) + E [µ?(X,Z) |Z = z] , (A.59)

and similarly denote h̄n(w) = µ̄n(x, z)− E [µ̄n(X,Z) |Z = z]. When µ(X,Z) ∈ A (Z), we have µ̄n(x, z) =
E [µ?(X,Z) |Z = z] , h̄n(w) = 0, thus

I − f(µn) = I =
E
[
(h̄n(W )− h?(W ))2

]√
E[(h?)2(W )]

(A.60)

Otherwise when E
[
h2
n(W )

]
> 0, we have

√
E [µ̄2

n(W )] = I. In this case, we rewrite the right hand side of
(A.58) in terms of µ̄n and further simplify it as below,

E
[
(h̄n(W )− h?(W ))2

]
−
(√

E
[
h̄2
n(W )

]
−
√
E[(h?)2(W )]

)2

2
√

E
[
h̄2
n(W )

] =
E
[
(h̄n(W )− h?(W ))2

]
2
√
E[(h?)2(W )]

which says that

I − f(µn) =
E
[
(h̄n(W )− h?(W ))2

]
2
√
E[(h?)2(W )]

(A.61)

Note that
√
E[(h?)2(W )] = I which does not depend on µ, hence it suffices to show

E
[
(h̄n(W )− h?(W ))2

]
= Op

(
inf

µ′∈Sµn
E
[
(µ′(X,Z)− µ?(X,Z))2

])
. (A.62)

We prove it by considering two cases:

(a) E [hn(W )h?(W )] ≤ 0,

(b) E [hn(W )h?(W )] > 0.
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Regarding case (a), we have

inf
µ′∈Sµn

E
[
(µ′(X,Z)− µ?(X,Z))2

]
= inf

c>0,∀g(z)

(
E
[
(chn(W )− h?(W ))2

]
+ E

[
(g(Z)− E [µ?(W ) |Z])2

])
= inf

c>0
E
[
(chn(W )− h?(W ))2

]
= E

[
(h?)2(W )

]
+ inf
c>0

c2E
[
h2
n(W )

]
− 2cE [hn(W )h?(W )]

= E
[
(h?)2(W )

]
where the first equality holds by the definition of Sµn and the fact that, for any g(Z),

E [h?(W )g(Z)] = E [g(Z)E [h?(W ) |Z]] = 0

and similarly E [hn(W )g(Z)] = 0. The second equality holds by choosing g(z) to be E [h?(W ) |Z = z]. The
third equality is simply from expanding and the last equality holds in case (a). Noticing

E
[
(h̄n(W )− h?(W ))2

]
≤ 2

(
E
[
h̄2
n(W )

]
+ E

[
(h?)2(W )

])
= 4E

[
(h?)2(W )

]
we thus establish (A.62). Regarding case (b), we have

inf
µ′∈Sµn

E
[
(µ′(X,Z)− µ?(X,Z))2

]
= inf

c>0
E
[
(chn(W )− h?(W ))2

]
= inf

c>0
E
[
(chn(W )− h0(W ) + h0(W )− h?(W ))2

]
= E

[
(h0(W )− h?(W ))2

]
+ inf
c>0

E
[
(chn(W )− h0(W ))2

]
= E

[
(h0(W )− h?(W ))2

]
= E

[
(h?)2(W )

]
− E

[
(h0(W ))2

]
(A.63)

where in the second equality, h0 is defined to be

h0(w) :=
E [hn(W )h?(W )]

E [h2
n(W )]

hn(w).

It satisfies the property E [hn(W ) (h?(W )− h0(W ))] = 0 thus the third equality holds. The fourth equality

comes from choosing c to be E[hn(W )h?(W )]
E[h2n(W )]

, which is positive in case (b). The last equality holds again due

to E [hn(W ) (h?(W )− h0(W ))] = 0. And we have

E
[
(h̄n(W )− h?(W ))2

]
= 2E

[
(h?)2(W )

]
− 2E

[
h̄n(W )h?(W )

]
= 2E

[
(h?)2(W )

]
− 2E

[
(h0(W ))2

]
ρ (A.64)

where ρ denotes the following term and can be further simplified based on the definition of h̄n(W ) and
h0(W ).

ρ :=
E
[
h̄n(W )h?(W )

]
E [(h0(W ))2]

=
I
√
E [h2

n(W )]

E [hn(W )h?(W )]
(A.65)

thus we have ρ > 0 in case (b) and ρ ≥ 1 by the Cauchy-Schwarz inequality. Combining this with (A.63)
and (A.64) yields (A.62). Finally we establish the bound in (2.7).
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A.4 Proofs in Section 2.5

In the true distribution case, the output Lnα(µ) from Algorithm 1 is a asymptotic lower confidence bound
for f(µ). In the case where the conditional distribution of X given Z is specified as QX|Z (in the following,
we often denote the true conditional distribution by P := PX|Z and the specified conditional distribution

by Q := QX|Z without causing confusion), the output from Algorithm 1 as denoted by Ln,Qα (µ). Note that
f(µ) can be rewritten with explicit subscripts as below (here we use the equivalent expression of f(µ) in
(A.6) and expand h(W )).

f(µ) =
EP [Y (µ(X,Z)− EP [µ(X,Z) |Z])]√

EPZ [VarP (µ(X,Z) |Z)]
(A.66)

Clearly, Ln,Qα (µ) is a lower confidence bound for the following quantity:

fQ(µ) :=
EP [Y (µ(X,Z)− EQ [µ(X,Z) |Z])]√

EPZ [VarQ (µ(X,Z) |Z)]
. (A.67)

Denote ω(x, z) :=
dPX|Z(x|z)
dQX|Z(x|z) (further abbreviated as dP

dQ without causing confusion). Remark that ω(x, z)

is the ratio of conditional densities if we are in the continuous case; ω(x, z) is the ratio of conditional
probability mass function if we consider discrete case. We also enforce the support of Q must contain the
support of P . Then we can quantify the difference between f(µ) and fQ(µ) as in Lemma A.5.

Lemma A.5. Assuming E
[
Y 4
]
< ∞, consider two joint distributions P,Q over (X,Z), defined as

P (x, z) = PX|Z(x|z)PZ(z), Q(x, z) = QX|Z(x|z)PZ(z). If we denote U to be the class of functions µ :
Rp → R satisfying one of the following conditions:

• µ(X,Z) ∈ A (Z);

• max{EP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
}/(EPZ [VarQ (µ(X,Z) |Z)])2 ≤ c0.

for some constants c0, then we have the following bounds

∆(P,Q) := sup
µ∈U
|θQ(µ)− f(µ)| ≤ C

√
EPZ

[
χ2
(
PX|Z‖QX|Z

)]
(A.68)

for some constant C only depending on E
[
Y 4
]

and c0, where the χ2 divergence between two distributions

P,Q on the probability space Ω is defined as χ2 (P‖Q) :=
∫

Ω(dPdQ − 1)2dQ.

When the X | Z model is misspecified, the inferential validity will not hold in general, without adjust-
ment on the lower confidence bound. Lemma A.5 gives a quantitative characterization about how much
we need to adjust.

Proof of Lemma A.5. When µ(X,Z) ∈ A (Z), f(µ) = fQ(µ) = 0, thus the statement holds. Now we
deal with the nontrivial case where EPZ [VarQ (µ(X,Z) |Z)] > 0. Without loss of generality, we assume
EPZ [VarQ (µ(X,Z) |Z)] = 1 for the following proof (since floodgate is invariate to positive scaling of µ).
Then the stated moment conditions on µ imply

EP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
≤ c0. (A.69)

First we simplify f(µ) and fQ(µ) into

f(µ) =
EP
[
µ?(X,Z)

(
µ(X,Z)− EPX|Z [µ(X,Z) |Z]

)]
√
EPZ

[
VarPX|Z (µ(X,Z) |Z)

] =
EP [µ?(W ) (µ(W )− EP [µ(W ) |Z])]√

EPZ [VarP (µ(W ) |Z)]

fQ(µ) =
EP
[
µ?(X,Z)

(
µ(X,Z)− EQX|Z [µ(X,Z) |Z]

)]
√
EPZ

[
VarQX|Z (µ(X,Z) |Z)

] =
EP [µ?(W ) (µ(W )− EQ [µ(W ) |Z])]√

EPZ [VarQ (µ(W ) |Z)]
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due to (A.4). where we denote W = (X,Z) (thus w = (x, z)). Noticing the following facts∣∣∣∣ a√b − c√
d

∣∣∣∣ =

∣∣∣∣∣a
√
d− c

√
b√

bd

∣∣∣∣∣ ≤ a√
bd

∣∣∣√b−√d∣∣∣+
1√
d
|a− c| ≤ a√

b
· 1

d
|b− d|+ 1√

d
|a− c| ,

we let a, c to be the numerators of f(µ) and fQ(µ) respectively and
√
b,
√
d to be their denominators.

Before dealing with |b− d| and |c− d|, we have the following bounds on the terms a/
√
b and 1/d.

a/
√
b = f(µ) ≤ I ≤ (EP

[
Y 4
]
)1/4 ≤ (c1)1/4, 1/d = 1/EPZ [VarQ (µ(X,Z) |Z)] = 1 (A.70)

where the first equality is by Lemma 2.2 and the second equality is by applying Jensen’s inequality
(EPZ [VarP (E [Y |X,Z] |Z)] ≤ EPZ

[
EP
[
(E [Y |X,Z])2 |Z

]]
≤ E

[
Y 2
]
≤
√
E [Y 4]). The equality holds

by assumption. Now it suffices to consider bounding |b − d| and |c − d| in terms of the expected χ2

divergence between PX|Z and QX|Z . We have the following equations for |a− c|:

|a− c| = |EP [µ?(W ) (µ(W )− EP [µ(W ) |Z])]− EP [µ?(W ) (µ(W )− EQ [µ(W ) |Z])]|
= |EP [µ?(W ) (EP [µ(W ) |Z]− EQ [µ(W ) |Z])]|
= |EPZ [EP [µ?(W ) |Z] (EP [µ(W ) |Z]− EQ [µ(W ) |Z])]| (A.71)

we can rewrite |EP [µ(W ) |Z]− EQ [µ(W ) |Z] | in the form of integral then derive the following bound∣∣∣∣∫ µ(x, Z)(1− ω(x, Z))dQX|Z(x | Z)

∣∣∣∣ ≤ √
EQX|Z [µ2(X,Z) |Z]

√∫
(1− w(x, Z))2dQX|Z(x | Z)

=
√

EQX|Z [µ2(W ) |Z]
√
χ2
(
PX|Z‖QX|Z

)
(A.72)

where ω(x, Z) =
dPX|Z(x|Z)

dQX|Z(x|Z) and the above inequality is from the Cauchy–Schwarz inequality. Hence we

can plug (A.72) into (A.71) and further bound |a− c| by

|a− c| ≤ EPZ

[
EPX|Z [µ?(W ) |Z]

√
EQX|Z [µ2(W ) |Z]

√
χ2
(
PX|Z‖QX|Z

)]
≤

√
EPZ

[
(EPX|Z [µ?(W ) |Z])2EQX|Z [µ2(W ) |Z]

]
·
√

EPZ
[
χ2
(
PX|Z‖QX|Z

)]
(A.73)

For the first part of the product in (A.73), we can apply the Cauchy–Schwarz inequality and Jensen’s
inequality and bound it by (EP

[
(µ?)4(W )

]
EQ
[
µ4(W )

]
)1/4, which is upper bounded by some constant

under the stated condition E
[
Y 4
]
<∞ and EQ

[
µ4(X,Z)

]
≤ c0 (from (A.69)). Now we write down |b− d|

below

|b− d| = |EPZ [VarP (µ(W ) |Z)]− EPZ [VarQ (µ(X,Z) |Z)]|
≤

∣∣EPZ [(EP [µ(W ) |Z])2 − (EQ [µ(W ) |Z])2
]∣∣

+
∣∣EPZ [EP [µ2(W ) |Z

]
− EQ

[
µ2(W ) |Z

]]∣∣ (A.74)

Similarly as (A.72), we have∣∣EP [µ2(W ) |Z
]
− EQ

[
µ2(W ) |Z

]∣∣ ≤√EQX|Z [µ4(W ) |Z]
√
χ2
(
PX|Z‖QX|Z

)
then under the moment bounds EQ

[
µ4(X,Z)

]
≤ c0 in (A.69) we can show the second term in (A.74) is

upper bounded by
√
c0EPZ

[
χ2
(
PX|Z‖QX|Z

)]
. Regarding the first term in (A.74), we can write

(EP [µ(W ) |Z])2 − (EQ [µ(W ) |Z])2 = (EP [µ(W ) |Z]− EQ [µ(W ) |Z]) (EP [µ(W ) |Z] + EQ [µ(W ) |Z])

then apply similar strategies in (A.71) and (A.73) to control it under C
√
EPZ

[
χ2
(
PX|Z‖QX|Z

)]
for some

constant C. And this will make use of the moment bound conditions EP
[
µ4(X,Z)

]
,EQ

[
µ4(X,Z)

]
≤ c0

in (A.69). Finally we establish the bound in (A.68).
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Proof of Theorem 2.6. When µn(X,Z) ∈ A (Z), we simply have Lα
n,Q(n)(µn) = 0, thus

P
(
Lα
n,Q(n)(µn) ≤ I

)
= 1 ≥ 1− α−O(n−1/2).

Otherwise we consider the nontrivial case where EPZ
[
VarQ(n) (µ(X,Z) |Z)

]
> 0. Similarly as in the proof

of Theorem 2.5, when assuming E[Y 8] < ∞, Var (Y |X,Z) ≥ τ > 0, and a uniform moment condition

max
{
E
[
µ8
n(X,Z)

]
,EQ(n)

[
µ8
n(X,Z)

]}
/(E

[
VarQ(n) (µn(X,Z) |Z)

]
)4 ≤ C, we have

P
(
Lα
n,Q(n)(µn) ≤ I + ∆n

)
≥ 1− α−O(n−1/2).

where ∆n = fQ
(n)

(µn) − I. Note that the constant in the rate of n−1/2 depends on τ and C. It is
worth mentioning that when the specified conditional distribution is Q(n), in the proof of establishing the
coverage rate of n−1/2, bounding those higher moments actually involves the term E

[
µ8
n(X,Z)

]
, in addition

to EQ(n)

[
µ8
n(X,Z)

]
.

Now it suffices to characterize the term ∆n, first notice that

∆n = fQ
(n)

(µn)− I = (fQ
(n)

(µn)− f(µn))− (I − f(µn)). (A.75)

Then we can apply Lemma A.5 to P , Q(n) and µn under the stated conditions, which will give the following
bound

(fQ
(n)

(µn)− f(µn)) ≤ C ′
√

E
[
χ2
(
PX|Z ‖Q

(n)
X|Z

)]
(A.76)

for some constant depending on E
[
Y 8
]

and C. Regarding the term I − f(µn), we recall the derivations in
the proof of Theorem 2.5, specifically (A.60) and (A.61), then the following holds

I − f(µn) ≥
E
[
(h̄n(W )− h?(W ))2

]
2I

=
E
[
(µ̄n(W )− µ?(W ))2

]
2I

(A.77)

where the equality holds by the definition of h?, µ̄n and h̄n. Combining (A.75), (A.76) and (A.77) yields
(2.10).

A.5 Proofs in Section 3.1

Proof of Lemma 3.2. We prove this lemma by a small trick, taking advantage of the idea of symmetry.
Remember as in (A.31), X’s null copy X̃ is constructed such that

X̃ ⊥⊥ (X,Y ) | Z, and X̃ | Z d
= X | Z. (A.78)

We can define the null copy of Ỹ by drawing from the conditional distribution of of Y given Z, without
looking at (X,Y ). Remark that introducing Ỹ is just for the convenience of proof and does not necessarily
mean we need to be able to sample it. Formally it satisfy

Ỹ ⊥⊥ (X,Y ) | Z, Ỹ | Z d
= Y | Z (A.79)

More specifically, we “generate” Ỹ conditioning on (X̃, Z), following the same conditional distribution as
Y |X,Z (It can be verified this will satisfy (A.79)). Now by the symmetry argument, we have

E
[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
= E

[
1{Ỹ ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
. (A.80)
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Let W = (X,Z) and define g(Z) := E [µ(W ) |Z] , h(W ) := µ(W ) − g(Z) with the associated functions
denoted by g(z), h(w), we can rewrite f`1(µ)/2 as

f`1(µ)/2 = P
(
Y (µ(X̃, Z)− E [µ(X,Z) |Z]) < 0

)
− P

(
Y (µ(X,Z)− E [µ(X,Z) |Z]) < 0

)
= E

[
1{Ỹ ·[µ(W )−E[µ(W ) |Z]]<0}

]
− E

[
1{Y ·[µ(W )−E[µ(W ) |Z]]<0}

]
= E

[
E
[(
1{Ỹ ·[µ(W )−E[µ(W ) |Z]]<0} − 1{Y ·[µ(W )−E[µ(W ) |Z]]<0}

) ∣∣∣W]]
= E

[
E
[(
1{Ỹ ·h(W )<0} − 1{Y ·h(W )<0}

) ∣∣∣W]]
where the second equality is by (A.80), the third one comes from the law of total expectation and the
fourth one is by the definition of h(W ). Now it suffices to consider maximizing the following quantity

E
[(
1{Ỹ ·h(W )<0} − 1{Y ·h(W )<0}

) ∣∣∣W = w
]

(A.81)

for each w = (x, z). Due to the property (A.79), we have

P
(
Ỹ = y |W

)
= P

(
Ỹ = y |Z

)
= P (Y = y |Z) y ∈ {−1, 1}

hence we can simplify the conditional expectation of the first indicator function in (A.81) into the following

E
[
1{Ỹ ·h(W )<0} |W = w

]
= P

(
Ỹ = 1, h(W ) < 0 |W = w

)
+ P

(
Ỹ = −1, h(W ) > 0 |W = w

)
= P (Y = 1 |Z = z)1{h(w)<0} + P (Y = −1 |Z = z)1{h(w)>0} (A.82)

Similarly we have

E
[
1{Y ·h(W )<0} |W = w

]
= P (Y = 1 |W = w)1{h(w)<0} + P (Y = −1 |W = w)1{h(w)>0} (A.83)

when E [Y |W = w] > E [Y |Z = z], we have

P (Y = 1 |W = w) > P (Y = 1 |Z = z) , P (Y = −1 |W = w) < P (Y = −1 |Z = z) ,

hence in this case, by comparing (A.82) and (A.83) we know h(w) > 0 will maximize (A.81) with maximum
value

P (Y = −1 |Z = z)− P (Y = −1 |W = w) = (1− E [Y |Z = z])/2− (1− E [Y |W = w])/2

= (E [Y |W = w]− E [Y |Z = z])/2 (A.84)

Similarly we can figure out the maximizer of h(w), when E [Y |W = w] < E [Y |Z = z]. Finally we have

h(w)


> 0, when E [Y |W = w] > E [Y |Z = z]
< 0, when E [Y |W = w] < E [Y |Z = z]
can be any choice, when E [Y |W = w] = E [Y |Z = z]

(A.85)

will maximize (A.81) with the maximum value |E [Y |W = w]−E [Y |Z = z] |/2. Remark the definition of
h(w) = µ(w)− g(z), we can restate (A.85) as

µ(x, z) = µ(w) > g(z), when E [Y |W = w] > E [Y |Z = z]
µ(x, z) = µ(w) < g(z), when E [Y |W = w] < E [Y |Z = z]
can be any choice, when E [Y |W = w] = E [Y |Z = z]

(A.86)

where again g(z) = E [µ(X,Z) |Z = z]. Apparently, choosing µ(x, z) to be the true regression function
µ?(x, z) will satisfy (A.86). Hence we show f`1(µ) is maximized at µ? with maximum value

E |E [Y |Z]− E [Y |X,Z]|
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which equals I`1 . Clearly from (A.86), µ?(x, z) is not the unique maximizer and any function in the set
described in the following set can attain the maximum.

{µ : Rp → R | sign (µ(x, z)− E [µ(X,Z) |Z = z]) = sign (E [Y |X = x]− E [Y |Z = z])}. (A.87)

Proof of Theorem 3.3. According to Algorithm 2, we first denote

U := µ(X,Z), g(z) := E[µ(X,Z) |Z = z], (A.88)

Gz(u) := P (U < u |Z = z) , Fz(u) := P (U ≤ u |Z = z) .

thus have the following expression of Ri:

Ri = GZi(g(Zi))1{Yi=1} + (1− FZi(g(Zi)))1{Yi=−1} − 1{Yi(µ(Wi)−g(Zi))<0}

First we prove that E [Ri] = f`1(µ)/2. Recall the definition of f`1(µ) in (3.2),

f`1(µ)/2 = E
[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
− E

[
1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
,

let W = (X,Z), then it suffices to show the following

E
[
GZ(g(Z))1{Y=1} + (1− FZ(g(Z)))1{Y=−1}

]
= E

[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
. (A.89)

By the law of total expectation we can rewrite the right hand side as

E
[
E
[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0} |Z, Y

]]
.

Due to the property (A.78), we have X̃ ⊥⊥ (Y,Z) | Z and X̃ | Z ∼ X | Z, which yields

E
[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0} |Z = z, Y = 1

]
= GZ(g(Z))1{Y=1}.

And we can do similar derivations when Y = −1. Thus we can prove E [Ri] = f`1(µ)/2 by showing (A.89).
In light of the deterministic relationship in Lemma 3.2, we have {Lαn(µ) ≤ f`1(µ)} ⊂ {Lαn(µ) ≤ I`1}, hence
it suffices to prove

P (Lαn(µ) ≤ f`1(µ)) ≥ 1− α−O(n−1/2). (A.90)

Note that Var (Ri) always exist due to the boundedness. When Var (Ri) = 0, we have Ri = f`1(µ)/2 = R̄
and s = 0, thus Lαn(µ) = f`1(µ), hence (A.90) trivially holds. Remark this includes the case when
µ(X,Z) ∈ A (Z). Otherwise, applying Lemma A.2 to i.i.d. bounded random variables Ri will yield (A.90),
where the constant will depend on Var (Ri).

A.6 Proofs in Section 3.2

Proof of Theorem 3.4. When T is degenerate or µ(X) ∈ A (Z), we immediately have Lα,Tn (µ) = 0 accord-
ing to Algorithm 3, which implies the coverage validity. Below we focus on the non-trivial case. Due to
the deterministic relationship

fTn (µ) ≤ fTn (µ?) ≤ f(µ?) = I,

it suffices to prove

PP
(
Lα,Tn (µ) ≤ fTn (µ)

)
≥ 1− α− o(1). (A.91)
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which can be reduced to establishing certain asymptotic normality based on i.i.d. random variables
Rm, Vm,m ∈ [n1] whenever the variance of the asymptotic distribution is nonzero. First, we verify that
under the stated conditions, all the involving moments are finite, which can be reduced to show

Var (Rm) ,Var (Vm) <∞.

For a given n2, it can be further reduced to the following

Var (Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm])

Var (Var (µ(Xi, Zi) |Zm,Tm)) <∞.

Using similar strategies in the proof of Theorem 2.3, we can show the above holds under the moment
conditions E

[
Y 2
]
,E
[
µ4(X)

]
<∞ by the Cauchy-Schwarz inequality and the tower property of conditional

expectation.
Note that in the proof of the main result, i.e. Theorem 2.3, we consider four different cases based on

whether some variances are zero or not. Here we only pursue the asymptotic coverage validity, then the
discussion on those four different cases becomes very straighforward. When both the variances of Rm, Vm
are zero, we have R̄/V̄ = fTn (µ), s2 = 0, then (A.91) holds immediately. When Var (Vm) = 0, we can
simply establish the asymptotic normality by the central limit theorem. Otherwise, delta method can be
applied. Here we give the derivation for the most non-trivial case where Var (Rm) ,Var (Vm) > 0. Denote

random vectors {Um}n1
m=1 = {(Um1, Um2)}n1

m=1
i.i.d.∼ U = (U1, U2) to be

Um1 = Rm − E [Yi (µ(Xi, Zi)− E [µ(Xi, Zi) |Zm,Tm]] , (A.92)

Um2 = Vm − E [Var (µ(Xi, Zi) |Zm,Tm)] (A.93)

hence we have E [U ] = 0. Denote hT (Wi) = µ(Xi, Zi)−E [µ(Xi, Zi) |Zm,Tm], we have the following holds

fTn (µ) =
E [Cov(µ?(Xi, Zi), µ(Xi, Zi) |Z,T )]√

E [Var(µ(Xi, Zi) |Z,T )]

=
E
[
Cov(µ?(Xi, Zi), h

T (Wi) |Z,T )
]√

E [E [(hT (Wi)2)]]

=
E
[
µ?(Xi, Zi)h

T (Wi)
]√

E [E [(hT (Wi)2)]]

=
E
[
Yih
T (Wi)

]√
E [(hT (Wi)2)]

,

where the first equality holds by the definition of fTn (µ), the second inequality holds by the definition
of hT (Wi). Regarding the third equality, we make use of the fact E

[
hT (Wi) |Zm,Tm

]
= 0 and the

tower property of conditional expectation. The last inequality holds by the tower property of conditional
expectation and the fact that hT (Wi) ∈ A (Xm,Zm). Let T = R̄/V̄ , then T − fTn (µ) can be rewritten as

T − fTn (µ) =
Ū1 + E

[
Yih
T (Wi)

]√
Ū2 + E [(hT (Wi)2)]

−
E
[
Yih
T (Wi)

]√
E [(hT (Wi)2)]

:= H(Ū)

where Ū = (Ū1, Ū2) = 1
n1

∑n
i=1 Um and H : R2 → R is defined through the following:

H(x) = H(x1, x2) :=
x1 + E

[
Yih
T (Wi)

]√
x2 + E [(hT (Wi)2)]

−
E
[
Yih
T (Wi)

]√
E [(hT (Wi)2)]

:= H(Ū)

when x2 > −E
[
(hT (Wi)

2)
]

and is set to be
E[YihT (Wi)]√
E[(hT (Wi)2)]

otherwise. Note that the first order derivatives

of H(x) exists, by applying the multivariate Delta method to mean zero random vectors {(Um1, Um2)}n1
m=1

with the nonlinear function chosen as H, we have

√
n1(T − fTn (µ))

d→ N
(
0, σ̃2

)
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whenever the variance term σ̃2 is nonzero. Exactly following the strategy in the proof of Theorem 2.3, we
have σ̃2 > 0 under the case where Var (Rm) ,Var (Vm) > 0. Also notice s2 is a consistent estimator of σ̃2,
then by the argument of Slutsky’s Theorem, (A.91) is established.

B An example for projection methods

Consider covariates W = (W1,W2) distributed as W1 ∼ N (0, 1) and W2 = W 2
1 + N (0, 1). Let Y =

W 2
1 +N (0, 1), with all the Gaussian random variables independent. Then W1 is the only important variable;

formally: W1 6⊥⊥ Y | W2 and W2 ⊥⊥ Y | W1. But the projection parameters are (E
[
W>W

]
)−1E [WY ] =

(0, 3
4)>, i.e., zero for the non-null covariate and non-zero for the null covariate.

C Hardness of upper confidence bounds

Let Dn be the i.i.d. samples {Yi, Xi, Zi}ni=1 and consider the mMSE gap I2, since the following theorem
involves the mMSE gap under different joint laws over (Y,X,Z), we write I2 as a nonparametric functional
explicitly, i.e.,

I2(F ) = EF [VarF (EF [Y |X] |Z)] , (C.1)

where F denotes the joint law over (Y,X,Z). Also note the inferential target in following theorem is the
squared version of the mMSE gap I2 instead of I. We use I2 only for the convenience of calculation and
this will not change the message.

Theorem C.1. Consider any joint law over (Y,X,Z) such that Var (Y ) <∞ and denote the class of these
distributions by F , given any confidence level 1 − α, there does not exist a non-trivial upper confidence
bound for I2(F ) with asymptotic coverage, i.e., for any upper confidence bound procedure U that is pointwise
asymptotically valid:

inf
F∈F

lim inf
n→∞

PF (U(Dn) ≥ I2(F )) ≥ 1− α,

we must have
sup
F∈F

lim sup
n→∞

PF (U(Dn) ≤ EF [VarF (Y |Z)]) ≤ α (C.2)

where EF [VarF (Y |Z)] is a trivial upper confidence bound.

Proof. We prove by contradiction. Suppose there exists an upper confidence bound procedure ensuring
asymptotic coverage such that (C.2) holds, that is, there exists a joint law over (Y,X,Z), denoted by
F∞ ∈ F such that

lim sup
n→∞

P∞ (U(Dn) ≤ E∞ [Var∞ (Y |Z)]) > α. (C.3)

where P∞, E∞, Var∞ denote that the data generating distribution for i.i.d. sample Dn is F∞. Further let
λ1 = E∞ [Var∞ (Y |Z)], then we have λ1 > 0, since otherwise E∞ [Var∞ (Y |Z)] = I2(F∞) = 0 and (C.3)
does not hold. Now we construct a sequence of joint laws over (Y,X,Z), denoted by {Fk}∞k=1, Fk ∈ F ,
such that (X,Z) follows the same distribution as that under F∞ and so does the conditional distribution
of ε | X,Z, where ε = Y − E [Y |X,Z], that is,

Pk (X,Z) = P∞ (X,Z) , ∀ k ≥ 1 (C.4)

Pk (ε |X,Z) = P∞ (ε |X,Z) , ∀ k ≥ 1 (C.5)

and there exist Borel sets Ak ∈ Rp−1 satisfying the following:

(a) Pk (Z ∈ Ak) = 1/k;

(b) Pk (Y |X,Z) = P∞ (Y |X,Z) when Z /∈ Ak;
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(c) Ek [µ?k(X,Z) |Z] = E∞ [µ?∞(X,Z) |Z] when Z ∈ Ak;

(d) Vark (µ?k(X,Z) |Z) = Var∞ (µ?∞(X,Z) |Z) + k
(
2λ1 − I2(F∞)

)
when Z ∈ Ak.

where Pk ,Ek, Vark denote that the data generating distribution for i.i.d. sample Dn is Fk, and µ?k(X,Z) :=
Ek [Y |X,Z] , µ?∞(X,Z) := E∞ [Y |X,Z]. Note here Ek [· |Z] ,Vark (· |Z) are the same as E∞ [· |Z] ,Var∞ (· |Z)
due to (C.4). Hence we can calculate I(Fk) through the following

I2(Fk)− I2(F∞) = E∞
[
1{Ak} (Var∞ (µ?k(X,Z) |Z)−Var∞ (µ?∞(X,Z) |Z))

]
= E∞

[
1{Ak}k

(
2λ1 − I2(F∞)

)]
= 2λ1 − I2(F∞) := λ2 (C.6)

where the first equality comes from (C.1), (C.4) and (b), the second equality holds due to (d) and the
third equality holds due to (a). Therefore I2(Fk) = 2λ1. We should also check whether Fk belongs to F .
Indeed, we consider the following

Vark (Y ) = Ek [Vark (Y |X,Z)] + Vark (Ek [Y |X,Z])

= Ek [Vark (ε |X,Z)] + Vark (Ek [Y |Z]) + I2(Fk)

= E∞ [Vark (ε |X,Z)] + Var∞ (Ek [Y |Z]) + I2(Fk)

= E∞ [Var∞ (ε |X,Z)] + Var∞ (E∞ [Y |Z]) + I2(Fk)

= E∞ [Var∞ (ε |X,Z)] + Var∞ (E∞ [Y |Z]) + I2(F∞) + λ2

= Var∞ (Y ) + λ2 <∞

where the first equality comes from the law of total variance, the second equality holds as a result of the
decomposition Y = µ?(X,Z) + ε and the equivalent expression of the mMSE gap (2.2), the third equality
holds due to (C.4), the fourth equality holds due to (C.5), (b) and (c), the fifth equality comes from (C.6).
Thus we verify Fk ∈ F , ∀ k ≥ 1. As the upper confidence bound procedure U ensures asymptotic coverage
validity and I2(Fk) = 2λ1, we have

Pk (U(Dn) ≥ 2λ1) ≥ 1− α+ ok(1) (C.7)

where the subscript in ok(1) emphasizes that the convergence is with respect to data generating function
Fk. Remark we only require for fixed k, ok(1)→ 0 as n→∞. Also notice the following

|P∞ (U(Dn) ≥ 2λ1)− Pk (U(Dn) ≥ 2λ1)| ≤ dTV (Fk, F∞) ≤ 1

k
, ∀ k ≥ 1 (C.8)

where the first inequality comes from the property of total variation distance and the second equality holds
as a result of (a), according to the construction of Fk. Combining (C.7) and (C.8) yields the following

P∞ (U(Dn) ≥ 2λ1) ≥ 1− α− 1/k + ok(1), ∀ k ≥ 1.

First let n→∞ then send k to infinity, we obtain

lim inf
n→∞

P∞ (U(Dn) ≥ 2λ1) ≥ 1− α

which contradicts
lim sup
n→∞

P∞ (U(Dn) ≤ E∞ [Var∞ (Y |Z)] = λ1) > α.
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D Transporting inference to other covariate distributions

To present how to perform inference on a target population whose covariate distribution differs from the
distribution the study samples are drawn from, let Q denote the target distribution for all the random
variables (Y,X,Z), but assume that QY |X,Z = PY |X,Z and that QX|Z and the likelihood ratio QZ/PZ
are known (note this last requirement is trivially satisfied if only X | Z changes between the study and
target distributions, i.e., we know QZ = PZ). Overloading notation slightly, let Q and P also denote the
real-valued densities of random variables under their respective distributions (so, e.g., P (Y = y |Z = z)
denotes the density of Y | Z = z under P evaluated at the value y), which we assume to exist. We can
now define a weighted analogue of the floodgate functional (2.5):

fw(µ) =
EP [(Y − µ(X̃, Z))2w(X,Z)w1(X̃, Z)− (Y − µ(X,Z))2w(X,Z)]√

2EP [(µ(X,Z)− µ(X̃, Z))2w(X,Z)w1(X̃, Z)]
, (D.1)

where w(x, z) = w0(z)w1(x, z), w0(z) = Q(Z=z)
P (Z=z) , w1(x, z) = Q(X=x |Z=z)

P (X=x |Z=z) , and X̃ ∼ PX|Z conditionally

independently of Y and X. The following Lemma certifies that fw satisfies property (a) of a floodgate
functional for I2

Q = EQ [VarQ (EQ[Y |X,Z] |Z)], the mMSE gap with respect to Q.

Lemma D.1. If QY |X,Z = PY |X,Z , then for any µ such that fw(µ) exists, fw(µ) ≤ IQ, with equality when
µ = µ?.

The proof is immediate from Lemma 2.2 if we notice that the ratio of the joint distribution of
(Y,X, X̃, Z) under the two populations equals

Q(Y,X,Z)Q(X̃ |Z)

P (Y,X,Z)P (X̃ |Z)
=
Q(Y |X,Z)

P (Y |X,Z)

Q(X,Z)

P (X,Z)

Q(X̃ |Z)

P (X̃ |Z)
= w1(X̃, Z)w(X,Z), (D.2)

where the last equality follows from PY |X,Z = QY |X,Z . Floodgate property (b) of fw can be established
in the same way as for f by computing weighted versions of Ri and Vi from Algorithm 1 according to the
weights in Equation (D.1), applying the central limit theorem, and combining them with the delta method.

E A general algorithm for inference on the MACM gap

Algorithm 2 involves computing the terms E[µ(Xi, Zi) |Zi] and evaluating the CDF of the conditional
distribution µ(X,Z) |Z = z at the value E[µ(Xi, Zi) |Zi], which is not analytically possible in general.
Unlike in Section 2.3, where users can replace E [µ(X,Z) |Z] and Var (µ(X,Z) |Z) by their Monte Carlo
estimators without it impacting asymptotic normality, we need slightly more assumptions when inferring
the MACM gap due to the discontinuous indicator functions in the definition of f`1(µ). Before stating the
required assumptions, we introduce some notation, all of which is specific to a given working regression
function µ.

U := µ(X,Z), g(z) := E[µ(X,Z) |Z = z],

Gz(u) := P (U < u |Z = z) , Fz(u) := P (U ≤ u |Z = z) .

ς(z) :=
√

Var (µ(X,Z) |Z = z),

Cu,z,y :=
max{|Gz,y(u)−Gz,y(g(z))| , |Fz,y(u)− Fz,y(g(z))|}

|u− g(z)|
(E.1)

where Fz,y(u) is the CDF of µ(X,Z) | Z = z, Y = y evaluated at u, Gz,y(u) is the limit from the left of
the same CDF at u, and with the convention for Cu,z,y that 0/0 = 0 (so it is well-defined when u = g(z)).
Now we are ready to state Assumption E.1.
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Assumption E.1. Assume the joint distribution over (Y,X,Z) and the nonrandom function µ : Rp → R
satisfy the following on a set of values of Y = y, Z = z of probability 1:

(a) There exists a δz,y > 0 and finite Cz,y such that

Cu,z,y ≤ Cz,y when |u− g(z)| ≤ ς(z)δz,y.

(b) The above Cz,y and δz,y satisfy

E
[
C2
Z,Y

]
<∞, E

[
1

δZ,Y

]
<∞.

(c) E
[
ς2(Z)

]
<∞, E

[
E[|µ(X,Z)−E[µ(X,Z) |Z]|3 |Z]

ς3(Z)

]
<∞.

These assumptions are placed because we have to construct the Monte Carlo estimator of E [µ(X,Z) |Z]
then plug it into the discontinuous indicator functions in f`1(µ). Assumptions E.1(a) and E.1(b) are
smoothness requirements on the the CDF of µ(X,Z) | Z, Y around E [µ(X,Z) |Z]. Assumption E.1(c)
specifies mild moment bound conditions on µ(X,Z). To see that they are actually sensible, we consider
the example of logistic regression and walk through those assumptions in Appendix E.1.

Assume that we can sample (M +K) copies of Xi from PXi|Zi conditionally independently of Xi and

Yi, which are denoted by {X̃(m)
i }Mm=1, {X̃(k)

i }Kk=1, and thus replace g(Zi) (i.e. E[µ(Xi, Zi) |Zi]) and Ri,
respectively, by the sample estimators

gM (Zi) =
1

M

M∑
m=1

µ(X̃
(m)
i , Zi), R

M,K
i =

1

K

K∑
k=1

(
1{

Yi(µ(X̃
(k)
i ,Zi)−gM (Zi))<0

})− 1{Yi(µ(Xi,Zi))−gM (Zi))<0}

Theorem E.2. Under the same setting as in Theorem 3.3, if either (i) E [Var(µ(X,Z) |Z)] = 0 or (ii)
E
[
Var

(
1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0} |Z, Y

)]
> 0 holds together with Assumption E.1 and n/M = o(1), then

Lαn,M,K(µ) computed by replacing g(Zi) and Ri with gM (Zi) and RM,K
i , respectively, in Algorithm 2 satisfies

P
(
Lαn,M,K(µ) ≤ I`1

)
≥ 1− α+ o(1).

The proof can be found in Appendix E.2. Intuitively when we construct a lot more null samples to
estimate the term g(Zi), our inferential validity improves. Formally, when n2/M = O(1), we can improve
the asymptotic miscoverage to O(n−1/2). Note that we only place a rate assumption on M (but put no
requirement on K).

E.1 Illustration of assumption E.1

We consider the joint distribution overW to be p-dimensional multivariate Gaussian withX = Wj , Z = W-j

for some 1 ≤ j ≤ p, and Y follows a generalized linear model with logistic link. That is,

W ∼ N (0,Σ) , µ?(W ) = 2P (Y = 1 |W )− 1, where P (Y = 1 |W ) =
exp (Wβ?)

1 + exp (Wβ?)
, β? ∈ Rp.

Choosing logistic regression as the fitting algorithm, we have U := µ(X,Z) takes the following form

U := µ(W ) =
2 exp (Wβ)

1 + exp (Wβ)
− 1

where β ∈ Rp is the fitted regression coefficient vector and βj 6= 0 whenever E [Var(µ(X,Z) |Z)] > 0.
Conditional on Z, U follows a logit-normal distribution (defined as the logistic function transformation
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of normal random variable) up to constant shift and scaling. Note that the probability density function
(PDF) of logit-normal distribution with parameters a, σ is

hlogit(u) =
1

σ
√

2π
exp

(
−(logit(u)− a)2

2σ2

)
1

u(1− u)
, u ∈ (0, 1) (E.2)

where logit(u) = log(u/(1−u)) is the logit function. Note hlogit(u) is bounded over its support. Regarding
the PDF of U | Z = z, Y = 1, which is denoted as hz,1(u), we first notice the following expression

h(x | Z = z, Y = 1) =
h(x | Z = z)P (Y = 1 |W = w)∫
h(x | Z = z)P (Y = 1 |W = w) dx

(E.3)

where wj = x,w-j = z, h(x | Z = z, Y = 1) and h(x | Z = z, Y = 1) denote the density functions of
X | Z = z, Y = 1 and X | Z = z. Since logit(z) is one-to-one mapping, we have fz,1(z) (up to constant
shift and scaling) takes the form similar to (E.3)

hz,1(u) =
hlogit(u)P (Y = 1 |W = w)∫
hlogit(u)P (Y = 1 |W = w) dx

(E.4)

where w = (x, z) = µ−1(u), and we denote the PDF of U | Z = z as hlogit(u) without causing confusion (the
parameters of hlogit(u) depend on z, β). Therefore we can show hz,1(z) is bounded (similarly for hz,−1(z)).

The boundedness of hz,y(u) implies that the corresponding CDF Fz,y (Fz,y = Gz,y in this case) satisfies
a Lipschitz condition over its support. Hence δz,y can be chosen to be greater than some positive constant

uniformly, so that E
[

1
δZ,Y

]
< ∞ holds. Though the Lipschitz constant does depend on z, β, it is easy to

verify E
[
C2
Z,Y

]
<∞, thus assumption (b) holds. And assumption (c) is just a regular moment condition.

E.2 Proofs in Appendix E

Proof of Theorem E.2. Similar to the proof of Theorem 3.3, it suffices to deal with the case where µ(X,Z) /∈
A (Z) and prove

P
(
Lαn,M,K(µ) ≤ f`1(µ)

)
≥ 1− α+ o(1). (E.5)

Note that in Algorithm 2, E [Ri] = f`1(µ)/2. But when g(Zi) (i.e., E[µ(Xi, Zi) |Zi]) and Ri are replaced

by gM (Zi) and RM,K
i , respectively, in Algorithm 2, we do not have E

[
RM,K
i

]
equal to f`1(µ)/2 anymore.

Note that f`1(µ)/2 equals the following

f`1(µ)/2 = E
[
1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0}

]
− E

[
1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]
, (E.6)

and RM,K
i is defined as

RM,K
i =

1

K

K∑
k=1

(
1{

Yi(µ(X̃
(k)
i ,Zi)−gM (Zi))<0

})− 1{Yi(µ(Xi,Zi))−gM (Zi))<0} (E.7)

Remark the value of E
[
RM,K
i

]
does not depend on K, hence we simplify the notation into RMi without

causing confusion. Actually we can show as M → ∞, E
[
RMi

]
→ f`1(µ)/2. Indeed, we need to show√

n|E
[
RMi

]
− f`1(µ)/2| = o(1) in order to prove (E.5). Also remark that in Section 3.1, it is mentioned

that under a stronger condition n2/M = O(1) (which will imply
√
n|E

[
RMi

]
− f`1(µ)/2| = O(1/

√
n)), we

can additionally establish a rate for n−1/2 for the asymptotic coverage validity in Theorem E.2. In either
cases, it is reduced to prove ∣∣∣∣E [RMi ]− f`1(µ)

2

∣∣∣∣ = O

(
1√
M

)
(E.8)
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First we ignore the i subscripts and get rid of the average over K null samples in the definition of RM,K
i ,

then E
[
RMi

]
can be simplified into

E
[
1{Y (µ((X̃,Z))−gM (Z))<0} − 1{Y (µ(X,Z))−gM (Z))<0}

]
(E.9)

where gM (Z) = 1
M

∑M
m=1 µ(X̃(m), Z). To bound

∣∣E [RMi ]− f`1(µ)/2
∣∣, we consider the two terms in (E.6)

and separately bound

II1 :=
∣∣∣E [1{Y (µ(X̃,Z)−gM (Z))<0} − 1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0

]∣∣∣ ,
II2 :=

∣∣∣E [1{Y (µ(X,Z))−gM (Z)<0} − 1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]∣∣∣ .
Starting from the second term above, we rewrite it as

II2 =
∣∣∣E [E [1{Y (µ(X,Z))−gM (Z))<0} − 1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣
≤

∣∣∣E [1{Y=1}E
[
1{µ(X,Z))<gM (Z)} − 1{µ(X,Z)<E[µ(X,Z) |Z]} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣
+
∣∣∣E [1{Y=−1}E

[
1{µ(X,Z))>gM (Z)} − 1{µ(X,Z)>E[µ(X,Z) |Z]} |Z, Y, {X̃(m)}Mm=1

]]∣∣∣
≤ E

[
max{

∣∣GZ,Y (gM (Z))−GZ,Y (g(Z))
∣∣ , ∣∣FZ,Y (gM (Z))− FZ,Y (g(Z))

∣∣}]
:= E [A] (E.10)

where the first equality is by the law of total expectation, the first and the second inequality are simply
expanding and rearranging. By construction, µ(X̃(m), Z),m ∈ [M ] are i.i.d. random variables conditioning
on Z, Y , then by central limit theorem we have

√
M(gM (Z)− g(Z))

ς(Z)

d→ N (0, 1)

conditioning on Z, Y . Further we obtain the following from the Berry–Esseen bound i.e. Lemma A.1:∣∣∣∣∣P
(∣∣∣∣∣
√
M |gM (Z)− g(Z)|

ς(Z)

∣∣∣∣∣ > √MδZ,Y

∣∣∣∣∣Z, Y
)
− sΦ(

∣∣∣√MδZ,Y

∣∣∣)∣∣∣∣∣ ≤ C√
M
·
E
[
|µ3(X,Z)| |Z

]
ς3(Z)

(E.11)

for any δZ,Y when conditioning on Z, Y , where sΦ(x) = 1 − Φ(x) and C is some constant which does not
depend on the distribution of (Y,X,Z). Regarding (E.10), by considering the event B := {|gM (Z) −
g(Z)|/ς(Z) ≤ δZ,Y }, we can decompose (E.10) into

E [A] = E
[
A1{B}

]
+ E

[
A1{Bc}

]
(E.12)

For the first term, we have

E
[
A1{B}

]
≤ E

[
CgM (Z),Z,Y

∣∣gM (Z)− g(Z)
∣∣1{B}]

= E
[
E
[
CgM (Z),Z,Y

∣∣gM (Z)− g(Z)
∣∣1{B} ∣∣∣Z, Y ]]

≤ E
[
CZ,Y E

[∣∣gM (Z)− g(Z)
∣∣ ∣∣Z, Y ]]

≤ E

[
CZ,Y

√
E
[
|gM (Z)− g(Z)|2

∣∣∣Z, Y ]] (E.13)

where the first inequality is by the definition of Cu,z,y, the first equality is from the law of total expectation,
the second inequality holds by (a) in Assumption E.1 and the last inequality holds due to the Cauchy–
Schwarz inequality. Remember we have gM (Z) = 1

M

∑M
m=1 µ(X̃(m), Z) where µ(X̃(m), Z),m ∈ [M ] are

i.i.d. random variables with mean g(Z) when conditioning on Z, Y , hence (E.13) equals

E

[
CZ,Y

√
ς2(Z)

M

]
≤ 1√

M

√
E
[
C2
Z,Y

]√
E [ς2(Z)] = O

(
1√
M

)
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where the first inequality is from the Cauchy–Schwarz inequality and the second one holds by (b) and (c)
in Assumption E.1. Now we have showed

E
[
A1{B}

]
= O

(
1√
M

)
, (E.14)

it suffices to prove the same rate for E
[
A1{Bc}

]
:

E
[
A1{Bc}

]
≤ 2 P (Bc)

= 2 E [P (Bc |Z)]

= 2 E
[
P
(√

M |gM (Z)− g(Z)|/ς(Z) >
√
MδZ,Y |Z

)]
≤ 2E

[
sΦ(
∣∣∣√MδZ,Y

∣∣∣) +
C√
M
·
E
[
|µ3(X,Z)| |Z

]
ς3(Z)

]

≤ 2E

[
2√
2π

exp{−Mδ2
Z,Y }√

MδZ,Y
+

C√
M
·
E
[
|µ3(X,Z)| |Z

]
ς3(Z)

]

where the first inequality holds since Fz,y(u), Gz,y(u) are bounded between 0 and 1, the first equality is
due to the law of total expectation, the second equality is from the definition of the event B, the second
inequality holds due to (E.11) and the last inequality is a result of Mill’s Ratio, see Proposition 2.1.2 in
Vershynin (2018). Under (b) and (c) in Assumption E.1, the following holds

E
[
A1{Bc}

]
= O

(
1√
M

)
. (E.15)

Finally we prove ∣∣∣E [1{Y (µ(X,Z))−gM (Z))<0} − 1{Y ·[µ(X,Z)−E[µ(X,Z) |Z]]<0}

]∣∣∣ = O

(
1√
M

)
.

Regarding the term

II1 =
∣∣∣E [1{Y (µ((X̃,Z))−gM (Z))<0} − 1{Y ·[µ(X̃,Z)−E[µ(X,Z) |Z]]<0

]∣∣∣
All of the steps are the same except that the CDF (and its limit) of the conditional distribution X | Z, Y
are replaced by those of X | Z, i.e. Fz(u) and Gz(u) as defined in (E.1). Hence it suffices to notice the
following derivations for Fz(u):

Fz(u) = P (U ≤ u |Z = z) = EY |Z=z [P (U ≤ u |Z = z, Y ) |Z = z]

= EY |Z=z [Fz,Y (u) |Z = z] ,

and similarly for Gz(u). Together with the definition of Cu,z,y and (a) in Assumption E.1, the above
equations yield

max{|Fz(u)− Fz(g(z))| , |Gz(u)−Gz(g(z))|} ≤ Cz,y|u− g(z)|

over the region |u− g(z)| ≤ ς(z)δz,y. Then the other steps follow as those of proving the term II2. Finally,

we obtain a rate of O
(

1√
M

)
for
∣∣E [RMi ]− f`1(µ)/2.

∣∣.
In the following, we prove the stronger version of (E.5), i.e.,

P
(
Lαn,M,K(µ) ≤ f`1(µ)

)
≥ 1− α−O

(
1√
n

)
, (E.16)
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when assuming n2/M = O(1). For this it suffices to establish the following Berry–Esseen bound:

∆ := sup
t∈R

∣∣∣∣P(√n(R̄− f`1(µ)/2

s

)
≤ t
)
− Φ(t)

∣∣∣∣ = O

(
1√
n

)
,

where R̄ and s are defined similarly as in Algorithm 2 except that g(Zi) and Ri are replaced with gM (Zi)
and RM,K

i , respectively. Notice that

∆ = sup
t∈R

∣∣∣∣∣P
(
√
n

(
R̄− E

[
RMi

]
s

)
≤ t+

√
n

(E
[
RMi

]
− f`1(µ)/2)

s

)
− Φ(t)

∣∣∣∣∣
≤ sup

t∈R

∣∣∣∣∣P
(
√
n

(
R̄− E

[
RMi

]
s

)
≤ t

)
− Φ(t)

∣∣∣∣∣+ sup
t∈R

∣∣∣∣∣Φ
(
t+
√
n

(E
[
RMi

]
− f`1(µ)/2)

s

)
− Φ(t)

∣∣∣∣∣
:= ∆1 + ∆2

Since the first derivative of Φ(t) is bounded by 1/
√

2π over R, we have

∆2 ≤
√
n√
2π

|f`1(µ)/2− E
[
RMi

]
|√

Var
(
RMi

) · (
√

Var
(
RMi

)
/s)

by Taylor expansion. Note that as a result of (E.8), we have

√
n|E

[
RMi

]
− f`1(µ)/2| = O(1/

√
n). (E.17)

Then it suffices to prove ∆1 = O(1/
√
n) and Var

(
RMi

)
> 0 (since s is simply the sample mean estimator of

Var
(
RMi

)
thus consistent). ∆1 = O(1/

√
n) holds when applying the triangular array version of the Berry

Esseen bound in Lemma A.2 (note that the result is stated in a way such that the bound clearly applies
to the triangular array with i.i.d. rows {RM,K

i }ni=1 for each M). The only thing we need to deal with is to
verify the following uniform moment conditions:

(i) supM,K E
[∣∣∣RM,K

i − E
[
RM,K
i

]∣∣∣3] <∞,

(ii) infM,K Var
(
RM,K
i

)
> 0.

where we go back to the original notation RM,K
i from the simplified one RMi since the above moments do

depend on both M and K. Since RM,K
i is always bounded, (i) holds. Regarding (ii), notice that we have

the following

Var
(
RM,K
i

)
= E

[
Var

(
RM,K
i |Zi, Yi, {X̃(m)

i }Mm=1

)]
+ Var

(
E
[
RM,K
i |Zi, Yi, {X̃(m)

i }Mm=1

])
≥ E

[
Var

(
RM,K
i |Zi, Yi, {X̃(m)

i }Mm=1

)]
= E

[
Var

(
1

K

K∑
k=1

(
1{

Yi(µ(X̃
(k)
i ,Zi)−gM (Zi))<0

})− 1{Yi(µ(Xi,Zi))−gM (Zi))<0}

∣∣∣∣∣Zi, Yi, {X̃(m)
i }Mm=1

)]
≥ E

[
Var

(
1{Yi(µ(Xi,Zi))−gM (Zi))<0}

∣∣∣Zi, Yi, {X̃(m)
i }Mm=1

)]
:= σ2

M (E.18)

where the first equality is due to the law of total expectation, the second equality is by the definition of

RM,K
i , the second inequality holds since {X̃(k)

i }Kk=1 ⊥⊥ Xi | Zi, Yi, {X̃(m)
i }Mm=1 due to the construction of
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{X̃(k)
i }Kk=1 and the variance of first term is non-negative. Before dealing with (E.18), notice the stated

condition
σ2

0 := E
[
Var

(
1{Yi(µ(Xi,Zi))−g(Zi))<0}

∣∣Zi, Yi)] > 0

Thus to establish (ii), it suffices to show σ2
M → σ2

0 as M → ∞. Recall the derivations in (E.10) for
bounding the term II2, we can similarly bound |σ2

M − σ2
0| by the following quantity:

|σ2
M − σ2

0| ≤ E
[
3 max{

∣∣GZ,Y (gM (Z))−GZ,Y (g(Z))
∣∣ , ∣∣FZ,Y (gM (Z))− FZ,Y (g(Z))

∣∣}]
= 3E [A] = 3(E

[
A1{B}

]
+ E

[
A1{Bc}

]
) = O

(
1√
M

)
.

where the last equality holds due to the results (E.14) and (E.15) from previous derivations for the term
II2. Finally we conclude (E.16), which immediately implies a weaker version of the result, i.e.the statement
of Theorem E.2.

F Co-sufficient floodgate details

F.1 Monte Carlo analogue of co-sufficient floodgate

Similarly as in Section 2, when the conditional expectations in Algorithm 3 do not have closed-form

expressions, Monte Carlo provides a general approach: within each batch, we can sample K copies X̃
(k)
m

of Xm from the conditional distribution Xm |Zm,Tm, conditionally independently of Xm and y and thus
replace Rm and Vm, respectively, by the sample estimators

(RKm, V
K
m ) =

1

n2

 mn2∑
i=(m−1)n2+1

Yi

(
µ(Xi, Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)
,

mn2∑
i=(m−1)n2+1

1

K − 1

K∑
k=1

(
µ(X

(k)
i , Zi)−

1

K

K∑
k=1

µ(X̃
(k)
i , Zi)

)2


We defer to future work a proof of validity of the Monte Carlo analogue of co-sufficient floodgate following
similar techniques as Theorem 2.4.

F.2 Low-dimensional multivariate Gaussian model

In this section we let Bm = {(m− 1)n2 + 1, . . . ,mn2}.

Proposition F.1. Suppose samples {X,Z}ni=1 are i.i.d. multivariate Gaussian parameterized as Xi | Zi ∼
N
(
(1, Zi)γ, σ

2
)

for some γ ∈ Rp and σ2 > 0, and Zi ∼ N (v0,Σ0). Assume σ2 is known, the batch size
n2 satisfies n2 > p+ 2 and choose T to be the following sufficient statistic functional

Tm = T (Xm,Zm) =

(∑
i∈Bm

Xi,
∑
i∈Bm

XiZi

)
.

Then if E
[
µ4(X,Z)

]
,E
[
(µ?)4(X,Z)

]
<∞, we have

f(µ)− fTn (µ) = O

(
p

n2 − p− 2

)
(F.1)

The proof can be found in Appendix F.4.1. Note the condition n2 > p + 2 is not surprising as we are
aware that when the sample size is smaller than p, the sufficient statistic functional is degenerate, resulting
in a zero value of fTn (µ). The bound in (F.1) allows p to grow with n in general, but when p is fixed, it
gives the rate of O(n−1

2 ), as mentioned in Section 3.2.
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F.3 Discrete Markov chains

To present our second example model, we define some new notation. Consider a random variable W
following a discrete Markov chain with K states with X = Wj , Z = W-j , then the model parameters

include the initial probability vector π(1) ∈ RK with π
(1)
k = P (W1 = k) and the transition probability

matrix Π(j) ∈ RK×K (between Wj−1 and X = Wj) with Π
(j)
k,k′ = P (Wj = k′ |Wj−1 = k). Further denoting

q(k, k1, k2) = P (Wj = k|Wj−1 = k1,Wj+1 = k2), we have

q(k, k1, k2) =
Π

(j)
k1,k

Π
(j+1)
k,k2∑K

k=1 Π
(j)
k1,k

Π
(j+1)
k,k2

,

so that the conditional distribution of Xm | Zm can be compactly written down as

P (Xm |Zm) =
∏

k,k1,k2∈[K]

(q(k, k1, k2))N(k,k1,k2), (F.2)

where N(k, k1, k2) =
∑

i∈Bm 1{Xi=k,Wi,j−1=k1,Wi,j+1=k1}. Thus we conclude that {N(k, k1, k2)}(k,k1,k2∈[K])

is sufficient immediately, and we proceed with this sufficient statistic.

Proposition F.2. Consider the above discrete Markov chain model and define the sufficient statistic
functional T as

Tm = T (Xm,Zm) = {N(k, k1, k2)}(k,k1,k2∈[K]).

Then if for variable X = Wj, K
2 min{P (Wj−1 = k1,Wj+1 = k2)}k1,k2∈[K]} ≥ q0 > 0 holds and assume

E
[
(µ?)2(X,Z)

]
,E
[
µ2(X,Z)

]
<∞, we have

f(µ)− fTn (µ) = O

(
K3

n2

)
The proof can be found in Appendix F.4.2. Note that T here is not minimal sufficient and the above

rate is cubic in K. The non-minimal sufficient statistics is adopted for the discrete Markov chain models
in this paper since it is easier to work with and gives the desired rate in n2, but we expect the rate in K
could be improved by using the minimal sufficient statistics. Again, K is allowed to grow with n at certain
rate in general, but when it is fixed we get a rate of O(n−1

2 ), as mentioned in Section 3.2.

F.4 Proofs in Appendix F

Lemma F.3. Under the moment conditions E
[
µ2(X,Z)

]
,E
[
(µ?)2(X,Z)

]
<∞, we can quantify the gap

between f(µ) and fTn (µ) as below.

f(µ)− fTn (µ) = O (max{II(µ), II(µ?)}) (F.3)

where II(µ) = EZ

[
VarT |Z (E [µ(Xi, Zi) |Z,T ])

]
.

When this lemma is used in the proof of Proposition F.1 and F.2, the nature sufficient statistic and
fTn (µ) are actually defined based on the batch Bm whose sample size is n2. We do not carry these in the
above notation, but use generic (X,Z) instead, where (X,Z) = {(Xi, Zi)}ni=1.

Proof of Lemma F.3. Recall the definition of f(µ) and fTn (µ),

f(µ) =
E [Cov(µ?(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
, (F.4)

fTn (µ) =
E [Cov(µ?(Xi, Zi), µ(Xi, Zi) |Z,T )]√

E [Var(µ(Xi, Zi) |Z,T )]
, (F.5)
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then denote Wi = (Xi, Zi), h(Wi) := µ(Wi)−E [µ(Wi) |Zi] , hT (Wi) := µ?(Wi)−E [µ?(Wi) |Z,T ] and as-

sume E
[
h2(Wi)

]
= 1 without loss of generality. First notice a simple fact |ab−

c
d | =

|ad−bc|
bd = |ad−cd+cd−bc|

bd ≤
|a−c|
b + c|b−d|

bd for a, b, c, d > 0, then let the numerator and denominator of f(µ) in (F.4) to be a, b respectively
(similarly denote c, d for fTn (µ) in (F.5)). And we have

max{1

b
,
c

bd
} ≤ 1 + fTn (µ) ≤ 1 + fTn (µ?) ≤ 1 + f(µ?) ≤ 1 + E

[
(µ?)2(X,Z)

]
<∞,

hence it suffices to bound |a− c| and |b− d|. First we have the following

a− c = E [Cov (µ?(Wi), µ(Wi) |Z)]− E [Cov (µ?(Wi), µ(Wi) |Z,T )] (F.6)

= E [Cov (E [µ?(Wi) |Z,T ],E [µ(Wi) |Z,T ] |Z)]

= EZ

[
CovT |Z (E [µ?(Wi) |Z,T ],E [µ(Wi) |Z,T ])

]
.

where the first equality holds due to the independence among i.i.d. samples (X,Z) = {(Xi, Zi)}ni=1. For
the second equality, we apply the law of total covariance to the covariance term Cov (µ?(Wi), µ(Wi) |Z)
then cancel out the second term of the first line, leading to the term in the second line. Finally we spell
out the randomness of the expectation and covariance through explicit subscripts in the last inequality.
They by applying Cauchy–Schwarz inequality, we obtain

|a− c| ≤
√
EZ

[
VarT |Z (E [µ?(Wi) |Z,T ])

]√
EZ

[
VarT |Z (E [µ(Wi) |Z,T ])

]
(F.7)

Regarding the term |b− d|, we have

|b− d| =

∣∣∣∣√E [h2(Wi)]−
√

E [(hT )2(Wi)]

∣∣∣∣
=

∣∣E [h2(Wi)
]
− E

[
(hT )2(Wi)

]∣∣√
E [h2(Wi)] +

√
E [(hT )2(Wi)]

≤
∣∣E [h2(Wi)

]
− E

[
(hT )2(Wi)

]∣∣√
E [h2(Wi)]

≤ E [Var (µ(Wi) |Z)]− E [Var (µ(Wi) |Z,T )]

= EZ

[
VarT |Z (E [µ(Wi) |Z,T ])

]
(F.8)

where we use the assumption E
[
h2(Wi)

]
= 1 and the definition of h, hT in the second inequality. The last

equality holds as a result of applying the law of total variance to the variance term Var (µ(Wi) |Z) then
getting the second term of line 4 cancelled out. Finally, combining (F.7) and (F.8) establishes the bound
in (F.3).

F.4.1 Proposition F.1

Proof of Proposition F.1. Throughout the proof, the nature sufficient statistic and fTn (µ) are defined based
on the batch Bm whose sample size is n2. But we will abbreviate the notation dependence on it for simplicity
and use a generic n instead of n2 to avoid carrying too many subscripts, without causing any confusion.
Now we present a roadmap of this proof.

(i) due to Lemma F.3, it suffices to bound the term II(µ), II(µ?) in (F.3).

(ii) we bound II(µ), II(µ?) with the same strategy. Specifically, we will show

II(µ) = O
(
EZi

[
EF
[
µ2(Wi)

]
E [hii |Zi]

])
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and similarly for II(µ?) under the stated model, where F denotes the conditional distribution of
Xi|Z, and hii is the ith diagonal term of the hat matrix H, which is defined later. This terminology
comes from the fact that we can treat Xj as response variable, (1, Z) as predictors, the natural
sufficient statistic for this low dimensional multivariate Gaussian distribution is equivalent to the
OLS estimator.

(iii) Regarding the term E [hii |Zi] above, we can carefully bound it by 1/(n− 1) + E [Ξ |Zi], where Ξ is
defined in (F.18).

(iv) Simply expanding E [Ξ |Zi] into three terms: III1, III2, III3, which are defined in (F.19), (F.20) and
(F.20), we will show III2 = 0 and figure out the stochastic representation of III1, III3, which turns
out to be related to chi-squared, Wishart and inverse-Wishart random variables.

(v) Cauchy–Schwarz inequalities together with some properties of those random variables (chi-squared,
Wishart and inverse-Wishart) and the stated moment conditions finally gives us the result in (F.1).

Having proved Lemma F.3, now we directly start with step (ii). Notice the following

II(µ) = EZ

[
VarT |Z (E [µ(Wi) |Z,T ])

]
= EZ

[
ET |Z

[
(EF [µ(Wi)]− EFT

[µ(Wi)])
2
]]

= EZ

[
VarF (µ(Wi))ET |Z

[
(EF [µ(Wi)]− EFT

[µ(Wi)])
2

VarF (µ(Wi))

]]
≤ EZ

[
VarF (µ(Wi)) min

{
ET |Z

[
χ2(FT ‖F )

]
, 2
}]

(F.9)

where the second equality is just rewriting the conditional variance, with F denoting the conditional
distribution Xi|Z and FT denoting the conditional distribution Xi|Z,T . Here we abbreviate the subscript
dependence on i for notation simplicity. The third equality holds since VarF (µ(Wi)) ∈ A (Z). Regarding
the last inequality, we make use of the variational representation of χ2-divergence:

χ2(P‖Q) = sup
µ

(EP (µ)− EQ(µ))2

VarQ(µ)

and the fact that

ET |Z

[
(EF [µ(Wi)]− EFT

[µ(Wi)])
2

VarF (µ(Wi))

]
≤

ET |Z
[
EF
[
µ2(Wi)

]]
+ ET |Z

[
EFT

[
µ2(Wi)

]]
− 2ET |Z [EFT

[µ(Wi)]EF [µ(Wi)]]

VarF (µ(Wi))

=
EF
[
µ2(Wi)

]
+ EF

[
µ2(Wi)

]
− 2(EF [µ(Wi)])

2

VarF (µ(Wi))

=
2VarF (µ(Wi))

VarF (µ(Wi))
= 2

where the first inequality is from expanding the quadratic term and the fact (EF [µ(Wi)])
2 ≤ EF

[
µ2(Wi)

]
,

(EFT
[µ(Wi)])

2 ≤ EFT

[
µ2(Wi)

]
, the first equality holds as a result of the tower property of conditional

expectation and EF [µ(Wi)] ∈ A (Z). Denote ui = (1, Zi)
> and the following n by p matrix by U :

U =

 u>1
...
u>n

 = (1,Z) (F.10)
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Recall that the sufficient statistic (here we ignore the batching index)

T = (
∑
i∈[n]

Xi,
∑
i∈[n]

XiZi) = U>X,

under the stated multivariate Gaussian model, we know X | Z ∼ N
(
Uγ, σ2In

)
, then the conditional

distribution of (Xi,T ) | Z can be specified as below(
Xi

T

)
∼ N

([
(1, Zi)γ
U>Uγ

]
, σ2

[
1 e>i U

U>e>i U>U

])
(F.11)

where ei ∈ Rn, (e1, · · · , en) forms the standard orthogonal basis. Noticing the above joint distribution is
multivariate Gaussian, we can immediately derive the conditional distribution as below,

Xi | Z,T ∼ N
(
e>i U(U>U)−1U>X, σ2(1− e>i U(U>U)−1U>ei)

)
.

Denote H = U(U>U)−1U>, which is the “hat” matrix. Now we compactly write down the following two
conditional distributions:

FT : Xi | Z,T ∼ N
(
e>i HX, σ2(1− hii)

)
F : Xi | Z ∼ N

(
(1, Zi)γ, σ

2
)

Note the sufficient statistic T is equivalent to

γ̂OLS = (U>U)−1U>X

whenever U>U is nonsingular. Here γ̂OLS is the OLS estimator for γ (when treating X as response
variable, (1, Z) as predictors). Simply, we have

γ̂OLS ∼ N
(
γ, σ2(U>U)−1

)
Now we are ready to calculate χ2(FT ‖F ). First,

e>i HX − (1, Zi)γ = e>i U γ̂
OLS − (1, Zi)γ

= e>i U(γ̂OLS − γ) ∼ N (0, σ2hii) (F.12)

Since 2σ2 > σ2(1− hii), applying Lemma F.4 yields the following

χ2(FT ‖F ) =
1

2

 1√
1− h2

ii

exp

{
(e>i HX − (1, Zi)γ)2

σ2(1 + hii)

}
− 1


≤ 1√

1− hii
exp

{
(e>i HX − (1, Zi)γ)2

σ2(1 + hii)

}
− 1

=
1√

1− hii
exp

{
hiiG

2

1 + hii

}
− 1 (F.13)

where G ∼ N (0, 1) is independent from X and the last equality holds due to (F.12). Plugin (F.13) back
to (F.9), we have

II(µ) ≤ EZ

[
VarF (µ(Wi)) min

{
ET |Z

[
χ2(FT ‖F )

]
, 2
}]

≤ EZ

[
VarF (µ(Wi)) min

{
ET |Z

[
1√

1− hii
exp

{
hiiG

2

1 + hii

}
− 1

]
, 2

}]
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Note the moment generating function for χ2
1 random variable is 1√

1−2t
when t < 1/2. Since the expectation

of exp
{
hiiG

2

1+hii

}
does not always exist, we consider two events E and Ec such that conditional on the event

E, the expectation exists and the probability of event Ec is small. More specifically, define the event
E = {hii < 1

2}, which implies

ET |Z

[
1√

1− hii
exp

{
hiiG

2

1 + hii

}]
− 1 =

1
√

1− hii
√

1− 2hii/(1 + hii)
− 1

=

√
1 + hii

1− hii
− 1

≤ 1 + hii
1− hii

− 1

≤ 4hii

hence we can bound II(µ) by the summation of the following two terms:

II1 := EZ

[
VarF (µ(Wi))1{E} · 4hii

]
, II2 := EZ

[
VarF (µ(Wi))1{Ec} · 2

]
Regarding II1, the following holds:

II1 ≤ 4 EZi
[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
,

where we apply the tower property of conditional expectation and VarF (µ(Wi)) ≤ EF
[
µ2(Wi)

]
∈ A (Zi)

Regarding II2, we have

II2 = 2 EZ

[
VarF (µ(Wi))1{Ec}

]
= 2 EZ

[
VarF (µ(Wi))E

[
1{Ec} |Zi

]]
≤ 2 EZi

[
EF
[
µ2(Wi)

]
P
(
hii ≥

1

2
|Zi
)]

≤ 4 EZi
[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
where the second equality comes from the tower property of conditional expectation and VarF (µ(Wi)) ∈
A (Zi) and the last inequality holds due to Markov’s inequality. Now we can compactly write down the
following bound for II(µ),

II(µ) ≤ II1 + II2 ≤ 8 EZi
[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
, (F.14)

Similarly we obtain II(µ?) = O
(
EZi

[
EF
[
(µ?)2(Wi)

]
E [hii |Zi]

])
. Now we proceed step (iii), i.e. calculating

E [hii |Zi]. Notice hii is the ith diagonal term of the “hat” matrix, which involves {wi}ni=1. In order to
bound the conditional expectation of hii given Zi in a sharp way, we carefully expand hii and try to get
wi separated from {wm}m 6=i. Recall the definition of U = (1,Z) in (F.10), we can rewrite

U>U =
∑
m 6=i

umu
>
m + uiu

>
i , A :=

∑
m 6=i

umu
>
m

Note that hii = u>i (U>U)−1ui since H = U(U>U)−1U>, hence we have

hii = u>i (A + uiu
>
i )−1ui

As n > p, A is almost surely positive definite thus invertible, then applying Sherman–Morrison formula to
A and uiu

>
i yields the following

hii = u>i A
−1ui −

(u>i A
−1ui)

2

1 + u>i A
−1ui

≤ u>i A−1ui. (F.15)
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Since A also involves the unit vector 1n−1, it is easier when we first project Z-i on 1n−1 then work with
the orthogonal complement. Bearing this idea in mind, we denote Ω = (1n−1,Z-i) which is a n − 1 by p
matrix, then rewrite A as

A = Ω>Ω =

(
1>n−11n−1 1>n−1Z-i

Z>-i 1n−1 Z>-iZ-i

)
where In−1 is the (n− 1) dimensional identity matrix. Denote

ĎZ-i :=
1

n− 1

∑
m 6=i

Zm =
1

n− 1
1>n−1Z-i Γ :=

(
1 −ĎZ-i

0 In−1

)
, (F.16)

we have

ΩΓ = (1n−1,Z-i)Γ = (1n−1,Z-i − 1n−1
ĎZ-i)

= (1n−1, (In−1 − Pn−1)Z-i).

where Pn−1 = 1n−11
>
n−1/(n− 1) is the projection matrix onto 1n−1. Then we immediately have

(ΩΓ)>ΩΓ =

(
n− 1 0

0 Z>-i (In−1 − Pn−1)Z-i

)
since Pn−11n−1 = 1n−1, (In−1 − Pn−1)1n−1 = 0 and

u>i Γ = (1, Zi)Γ = (1, Zi − ĎZ-i). (F.17)

Combining (F.16) with (F.17) yields the following

u>i A
−1ui = u>i (Ω>Ω)−1ui

= u>i Γ((ΩΓ)>ΩΓ)−1Γ>wi

=
1

n− 1
+ (Zi − ĎZ-i)(Z

>
-i (In−1 − Pn−1)Z-i)

−1(Zi − ĎZ-i)
>,

which together with (F.15) implies E [hii |Zi] ≤ E
[
u>i A

−1ui |Zi
]

= 1/(n− 1) + E [Ξ |Zi], where

Ξ = (Zi − ĎZ-i)(Z
>
-i (In−1 − Pn−1)Z-i)

−1(Zi − ĎZ-i)
>. (F.18)

As the problem has been reduced to calculating E [Ξ |Zi], we arrive at the step (iv) now. Write (Zi −
ĎZ-i) = (Zi − v0) − ( ĎZ-i − v0), where v0 is the mean of Gaussian random variable Z, we can expand
E [Ξ |Zi] = III1 + III2 + III3, where

III1 = (Zi − v0)E
[
(Z>-i (In−1 − Pn−1)Z-i)

−1 |Zi

]
(Zi − v0)> (F.19)

III2 = −2(Zi − v0)E
[
(Z>-i (In−1 − Pn−1)Z-i)

−1( ĎZ-i − v0)> |Zi

]
(F.20)

III3 = E
[
( ĎZ-i − v0)(Z>-i (In−1 − Pn−1)Z-i)

−1( ĎZ-i − v0)> |Zi

]
(F.21)

Below we are going to show III2 = 0 and derive III1, III3 carefully. Regarding the term III1, we exactly write
down its stochastic representation. Under the state Gaussian model, we have Z>-i ∼ N

(
v01

>
n−1, In−1 ⊗Σ0

)
,

then (Z>-i (In−1 − Pn−1)Z-i)
−1 follows an inverse Wishart distribution i.e.

(Z>-i (In−1 − Pn−1)Z-i)
−1 ∼ W−1

p−1(Σ−1
0 , n− 2)

and Z-i ⊥⊥ Zi, hence we can calculate

E
[
(Z>-i (In−1 − Pn−1)Z-i)

−1 |Zi

]
=

Σ−1
0

n− p− 2
.
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Plug in the above equation into (F.19), we have

III1 = (Zi − v0)Σ−1
0 (Zi − v0)> =

Φ

n− p− 2
, where Φ ∼ χ2

p−1, Φ ⊥⊥ Z-i. (F.22)

Regarding the term III2 in (F.20), we first denote Z = Z-i − 1n−1v0 and notice

Z ∼ N (0, In−1 ⊗Σ0) , 1>n−1Z = (n− 1)( ĎZ-i − v0), (F.23)

then rewrite III2 as below

III2 = −2(Zi − v0)E

[
((Z + 1n−1v0)>(In−1 − Pn−1)(Z + 1n−1v0))−1 (1>n−1Z)>

n− 1

]
where we also makes use of the fact that

(Z>-i (In−1 − Pn−1)Z-i)
−1( ĎZ-i − v0)> ⊥⊥ Zi

Noticing that (1n−1v0)>(In−1 − Pn−1) = 0, we can simplify further

III2 = − 2

n− 1
(Zi − v0)E

[
(Z>(In−1 − Pn−1)Z)−1(1>n−1Z)>

]
(F.24)

Notice in the above equation, Z>(In−1 − Pn−1) is the orthogonal complement of Z>1n−1, which implies
independence under the Gaussian distribution assumption, which we will now use to prove the expectation
in (F.24) equals zero. Formally, we first have (Z>(In−1 − Pn−1),Z>1n−1) are multivariate Gaussian.
Introducing the vectorization of matrix and the Kronecker product, we can express in the following way:

vec(Z>(In−1 − Pn−1)) = (In−1 − Pn−1)⊗ Ip−1vec(Z>), vec(Z>) = 1n−1 ⊗ Ip−1vec(Z>).

Now we are ready to calculate the covariance

Cov
(

vec(Z>(In−1 − Pn−1)), vec(Z>1n−1)
)

= ((In−1 − Pn−1)⊗ Ip−1)(In−1 ⊗Σ0)(1n−1 ⊗ Ip−1)>

= ((In−1 − Pn−1)In−11n−1)⊗ (Ip−1Σ0Ip−1) = 0

where in above equalities we use the fact Var
(
vec(Z>)

)
= In−1 ⊗ Σ0 in (F.23) and the mixed-product

property of the Kronecker product. Therefore

Z>(In−1 − Pn−1) ⊥⊥ Z>1n−1 =⇒ III2 = 0 (F.25)

Regarding the term III3, first denote Ψ1 = Z>Pn−1Z and Ψ2 = Z>(In−1 − Pn−1)Z, we obtain two
independent Wishart random variables i.e.

Ψ1 ∼ Wp−1(Σ0, 1), Ψ2 ∼ Wp−1(Σ0, n− 2), Ψ1 ⊥⊥ Ψ2.

Then III3 can be calculated as below

III3 = E
[
( ĎZ-i − v0)(Z>-i (In−1 − Pn−1)Z-i)

−1( ĎZ-i − v0)> |Zi

]
= E

[
1>n−1Z(Z>(In−1 − Pn−1)Z)−1Z>1n−1

]
/(n− 1)2

= E
[
Tr
(
1>n−1Z(Z>(In−1 − Pn−1)Z)−1Z>1n−1

)]
/(n− 1)2

= E
[
Tr(Ψ1Ψ

−1
2 )
]
/(n− 1)

= TrE
[
Ψ1Ψ

−1
2

]
/(n− 1)

= Tr(E [Ψ1]E
[
Ψ−1

2

]
)/(n− 1)

= Tr(Σ0
Σ−1

0

n− p− 2
)/(n− 1)

=
p

(n− 1)(n− p− 2)
(F.26)
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where the first equality is from (F.21), the second equality is similarly obtained as (F.24), the fourth
equality holds by the fact Tr(AB) = Tr(BA) and the definition of Ψ1 and Ψ2, the sixth equality holds
due to Ψ1 ⊥⊥ Ψ2. So far we have shown III2 = 0 and figured out the stochastic representation of III2, III3,
which are also further simplified using the properties of Wishart and inverse-Wishart random variables.
These bring us to the final stage i.e. step (v). Combining (F.15), (F.22), (F.25) and (F.26), we finally
obtain

E [hii |Zi] ≤ E
[
u>i A

−1ui |Zi
]

≤ 1

n− 1
+ E [Ξ |Zi]

=
1

n− 1
+ III1 + III2 + III3

≤ 1

n− 1
· n− 2

n− p− 2
+

Φ

n− p− 2
(F.27)

Recall the bound for II(µ) in (F.14), then we apply the Cauchy–Schwarz inequality to E
[
µ2(Wi) |Zi

]
and

E [hii |Zi], which yields

II(µ) ≤ 8 EZi
[
EF
[
µ2(Wi)

]
E [hii |Zi]

]
≤

8(n− 2)E
[
µ2(Wi)

]
(n− 1)(n− p− 2)

+
8
√
E [Φ2]

n− p− 2

√
EZi [E [µ4(Wi) |Zi]]

≤
8
√
E [µ4(X,Z)]

n− p− 2

(
1 +

√
E [Φ2]

)
(F.28)

where in the above equality, Φ ∼ χ2
p−1 and is independent from Z-i. Since E

[
Φ2
]
≤ p2, under the

assumption E
[
µ4(X,Z)

]
<∞, we obtain the following bound on II(µ),

II(µ) = O

(
p

n− p− 2

)
. (F.29)

Replacing the µ function by µ? and applying the assumption E
[
(µ?)4(X,Z)

]
< ∞, we can establish the

same rate for II(µ?). Shifting back to the n2 notation, we finally establish (F.1), i.e.

f(µ)− fTn (µ) = O

(
p

n2 − p− 2

)
.

F.4.2 Proposition F.2

Proof of Proposition F.2. From the proposition statement, we know the sufficient statistic Tm and fTn (µ)
are defined based on the batch Bm whose sample size is n2. Again, we will abbreviate the notation
dependence for simplicity, i.e. use a generic n instead of n2, use T and Z instead of Tm and Zm, as we
did in the proof of Proposition F.1. Following the derivations up to (F.9) in the proof of Proposition F.1,
it suffices to deal with the following term:

Π(µ) := EZ

[
VarF (µ(Wi))ET |Z

[
χ2(FT ‖F )

]]
.

where F denotes the conditional distribution Xi|Z and FT denotes the conditional distribution Xi|Z,T .
Below we will consider quantifying the χ2 divergence between FT and F , Let k1, k2 be Wi,j−1,Wi,j+1
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respectively, we can write down the probability mass function of FT and F :

F : P (Xi |Z) =

K∏
k=1

(q(k, k1, k2))
1{Xi=k,Wi,j−1=k1,Wi,j+1=k1} (F.30)

FT : P (Xi |Z,T ) =
K∏
k=1

(q̂(k, k1, k2))
1{Xi=k,Wi,j−1=k1,Wi,j+1=k1} (F.31)

where q̂(k, k1, k2) = N(k, k1, k2)/N(:, k1, k2) and N(:, k1, k2) =
∑n

i=1 1{Wi,j−1=k1,Wi,j+1=k2}. Recall the

definition of χ2 divergence between two discrete distributions, we have

χ2(FT ‖F ) =

K∑
k=1

(q̂(k, k1, k2)− q(k, k1, k2))2

q(k, k1, k2)

Notice that

ET |Z [q̂(k, k1, k2)] = q(k, k1, k2), VarT |Z (q̂(k, k1, k2)) =
q(k, k1, k2)(1− q(k, k1, k2))

N(:, k1, k2)

hence we can calculate the following conditional expectation,

ET |Z
[
χ2(FT ‖F )

]
=

K∑
k=1

ET |Z

[
(q̂(k, k1, k2)− q(k, k1, k2))2

q(k, k1, k2)

]

=

K∑
k=1

q(k, k1, k2)(1− q(k, k1, k2))

N(:, k1, k2)q(k, k1, k2)

=
K∑
k=1

K − 1

N(:, k1, k2)
(F.32)

where we use the fact
∑K

k=1 q(k, k1, k2) = 1 in the last equality. Now Π(µ) can be calculated as below.

Π(µ) = EZ

[
VarF (µ(Wi))ET |Z

[
χ2(FT ‖F )

]]
= EZi

[
VarF (µ(Wi))E

[
ET |Z

[
χ2(FT ‖F )

]
|Zi
]]

= EZi

[
VarF (µ(Wi))E

[
K − 1

N(:,Wi,j−1,Wi,j+1)
|Zi
]]

= EZi

[
VarF (µ(Wi))E

[
K − 1

1 +Nn−1(Wi,j−1,Wi,j+1)
|Zi
]]

(F.33)

where the second equality comes from the tower property of conditional expectation, the third equality
holds due to (F.32) and k1 = Wi,j−1, k2 = Wi,j+1. In term of the fourth equality, we simply use the
new notation that Nn−1(Wi,j−1,Wi,j+1) =

∑n
m 6=i 1{Wm,j−1=Wi,j−1,Wm,j+1=Wi,j+1}. Due to the independence

among i.i.d. samples {Wi}ni=1, we have, when conditioning on Zi = Wi,-j

1{Wm,j−1=Wi,j−1, Wm,j+1=Wi,j+1}
i.i.d.∼ Bern(q(Wi,j−1,Wi,j+1)), m ∈ [n], m 6= i.

where q(Wi,j−1,Wi,j+1) = P (Wj−1 = Wi,j−1,Wj+1 = Wi,j+1 |Zi). Given a binomial random variable B ∼
Bin(n, q), we have the following fact by elementary calculus,

E
[

1

1 +B

]
=

1

(n+ 1)q
· (1− (1− q)n+1). (F.34)
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hence we can bound the term Π(µ) as below

Π(µ) =
K − 1

n
EZi

[
VarF (µ(Wi))

1− (1− q(Wi,j−1,Wi,j+1))n

q(Wi,j−1,Wi,j+1)

]
(F.35)

≤ K − 1

n
EZi [VarF (µ(Wi))]

K2

K2 min{q(k1, k2)}
(F.36)

≤ K3

n

E
[
µ2(X,Z)

]
q0

(F.37)

where the equality holds as a result of (F.33) and (F.34). And in the second line, we lower bound
q(Wi,j−1,Wi,j+1) by min{q(k1, k2)}. Assuming K2 min{P (Wj−1 = k1,Wj+1 = k2)}k1,k2∈[K]} ≥ q0 > 0

gives us the third line. Then we can establish Π(µ) = O
(
K3

n

)
(and similarly for Π(µ?)) under the stated

moment condition E
[
(µ)2(X,Z)

]
,E
[
(µ?)2(X,Z)

]
< ∞. Finally, making use of the rate result about

Π(µ),Π(µ?) and following the same derivation as in Proposition F.1, we have f(µ) − fTn (µ) = O
(
K3

n2

)
,

where we shift back to the n2 notation.

F.4.3 Ancillary lemmas

Lemma F.4 can be similarly derived as the expression for the Rényi divergence between two multivariate
Gaussian distributions in Section 2.2.4 of Gil (2011). For completeness, we still present our proof below.

Lemma F.4. The χ2-divergence between P : N (a1,Σ1) and Q : N (a2,Σ2) equals the following whenever
2Σ2 − Σ1 � 0:

|Σ2|
|Σ1|

1
2 |2Σ2 − Σ1|

1
2

exp
{

(a1 − a2)>(2Σ2 − Σ1)−1(a1 − a2)
}
− 1.

where a1,a2 ∈ Rd, Σ1,Σ2 ∈ Rd×d, Σ � 0 means a matrix Σ is positive definite and |Σ| denotes its
determinant.

Proof of Lemma F.4. According to the definition of the χ2-divergence, we have

χ2(P‖Q) :=

∫ (
dP

dQ

)2

dQ− 1 =

∫
p2(x)

q(x)
dx− 1, (F.38)

where p(x), q(x) are the Gaussian density functions. For multivariate Gaussian random variable with mean
a ∈ Rd and covariance matrix Σ ∈ Rd×d, the density function equals the following

f(x) =
1

(2π)
d
2 |Σ|

1
2

exp

{
−1

2
(x− a)>Σ−1(x− a)

}
, x ∈ Rd. (F.39)

Hence we can calculate the χ2-divergence as below,

χ2(P‖Q) =
|Σ2|

1
2

|Σ1|

∫
Rd

1

(2π)
d
2

exp

{
−1

2
(x− a1)>(2Σ−1

1 )(x− a1) +
1

2
(x− a2)>Σ−1

2 (x− a2)

}
dx− 1

:=
|Σ2|

1
2

|Σ1|

∫
Rd

1

(2π)
d
2

exp {II1 + II2 + II3} dx− 1, (F.40)

where the first equality holds following the definition in (F.38) and the second equality comes from ex-
panding the term in the exponent and combining, together with the following new notations:

II1 := −1

2
x>(2Σ−1

1 − Σ−1
2 )x (F.41)

II2 := −1

2
· (−2x>)(2Σ−1

1 a1 − Σ−1
2 a2) (F.42)

II3 := −1

2
(2a>1 Σ−1

1 a1 − a2Σ−1
2 a2) (F.43)
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Let Σ−1
? = 2Σ−1

1 −Σ−1
2 , Σ−1

? a? = 2Σ−1
1 a1−Σ−1

2 a2 (since we assume the positive definiteness of 2Σ2−Σ1,
which implies 2Σ−1

1 − Σ−1
2 � 0, hence Σ? and a? are well-defined), then we have

(Σ−1
1 Σ?Σ

−1
2 )−1 = Σ2Σ−1

? Σ1 = 2Σ2 − Σ1 (F.44)

2Σ?Σ
−1
1 − Id = Σ?(2Σ−1

1 − Σ−1
? ) = Σ?Σ

−1
2 (F.45)

1

2
a>? Σ−1

? a? =
1

2
(2Σ−1

1 a1 − Σ−1
2 a2)>Σ?(2Σ−1

1 a1 − Σ−1
2 a2)

= 2a>1 Σ−1
1 Σ?Σ

−1
1 a1 − 2a>1 Σ−1

1 Σ?Σ
−1
2 a2 +

1

2
a>2 Σ−1

2 Σ?Σ
−1
2 a2

= 2a>1 Σ−1
1 Σ?Σ

−1
1 a1 − 2a>1 (2Σ2 − Σ1)−1a2 +

1

2
a>2 Σ−1

2 Σ?Σ
−1
2 a2 (F.46)

where the first and the second line hold by the definition of Σ?, the second equality holds since Σ−1
? =

Σ−1
? Σ?Σ

−1
? , the third line is simply from expanding and the last equality comes from (F.44). The above

equations will be used a lot for the incoming derivations. Now the term in the exponent can be written as

II1 + II2 + II3

= −1

2
(x>Σ−1

? x− 2x>Σ−1
? a?) + II3

= −1

2
(x− a?)

>Σ−1
? (x− a?) +

1

2
a>? Σ−1

? a? −
1

2
(2a>1 Σ−1

1 a1 − a2Σ−1
2 a2)

= λ(x) + a>1 Σ−1
1 (2Σ?Σ

−1
1 − Id)a1 − 2a>1 (2Σ2 − Σ1)−1a2 +

1

2
a>2 Σ−1

2 (Σ?Σ
−1
2 + Id)a2

= λ(x) + a>1 Σ−1
1 Σ?Σ

−1
2 a1 − 2a>1 (2Σ2 − Σ1)−1a2 + a>2 Σ−1

2 Σ?Σ
−1
1 a2

= λ(x) + a>1 (2Σ2 − Σ1)−1a1 − 2a>1 (2Σ2 − Σ1)−1a2 + a>2 (2Σ2 − Σ1)−1a2

= λ(x) + (a1 − a2)>(2Σ2 − Σ1)−1(a1 − a2) := λ(x) +Q(a1,a2,Σ1,Σ2) (F.47)

where the first equality holds by the definition of Σ?, a? and (F.41), (F.42), and the second equality
holds due to (F.43). Regarding the third equality, we denote the term which depends on x by λ(x) :=
−1

2(x−a?)
>Σ−1

? (x−a?). As for the other constant terms in the third line, we simply combine (F.46) with
the expansion of the term II3 and rearrange them into three terms: a>1 (·)a1, a>1 (·)a2 and a>2 (·)a2. The
fourth equality holds as a result of applying (F.45) twice and the last equality is simply from rearranging.
Since only the term λ(x) depends on x, we can simplify the χ2-divergence into the following

χ2(P‖Q) =
|Σ2|

1
2

|Σ1|
exp {Q(a1,a2,Σ1,Σ2)}

∫
Rd

1

(2π)
d
2

exp {λ(x)} dx− 1

=
|Σ2|

1
2

|Σ1|
exp {Q(a1,a2,Σ1,Σ2)}

∫
Rd

|Σ?|
1
2

(2π)
d
2 |Σ?|

1
2

exp {λ(x)} dx− 1

=
|Σ2|

1
2

|Σ1|
|Σ?|

1
2 exp {Q(a1,a2,Σ1,Σ2)} − 1

=
|Σ2|
|Σ1|

1
2

|Σ−1
1 Σ?Σ

−1
2 |

1
2 exp {Q(a1,a2,Σ1,Σ2)} − 1

=
|Σ2|

|Σ1|
1
2 |2Σ2 − Σ1|

1
2

exp
{

(a1 − a2)>(2Σ2 − Σ1)−1(a1 − a2)
}
− 1

where the first equality comes from (F.40) and (F.47), the third equality holds due to the definition of
λ(x) and the fact that

∫
f(x)dx = 1, where f(x) is the Gaussian density function with the mean a? and

covariance matrix Σ?), the fourth equality holds by making use of the properties of determinant and the
last equality holds as a result of (F.44).
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G Further simulation details

Source code for conducting floodgate in our simulation studies can be found at https://github.com/

LuZhangH/floodgate.

G.1 Nonlinear model setup

Consider W which follows a Gaussian copula distribution with X = Wj0 , Z = W-j0 for some j0 (1 ≤ j0 ≤ p),
i.e.,

W latent ∼ AR(1), Wj = 2ϕ(X latent
j )− 1, ∀ 1 ≤ j ≤ p. (G.1)

Hence the marginal distribution for Wj is Unif[−1, 1] (in fact, these are the inputs to the fitting methods
we use in floodgate, not the AR(1) latent variables W latent). We consider the following conditional model
for Y given W , with standard Gaussian noise,

µ?(x, z) = µ?(w) :=
∑
j∈S1

gj(wj) +
∑

(j,l)∈S2

gj(wj)gl(wl) +
∑

(j,l,m)∈S3

gj(wj)gl(wl)gm(wm) (G.2)

where each function gj(x) is randomly chosen from the following:

sin(πx), cos(πx), sin(πx/2), cos(πx)I(x > 0), x sin(πx), x, |x|, x2, x3, exp(x)− 1. (G.3)

S1 basically contains the main effect terms, while S2 contain the pairs of variables with first order inter-
actions. Tuples of variables involving second order interaction are denoted by S3. For a given amplitude,
(G.2) is scaled by the amplitude value divided by

√
n.

Now we describe the construction of S1, S2, S3. First we randomly pick 30 variables into S? and initialize
Swl = S?. 15 of them will be randomly assigned into S1 and removed from Swl. Among these 15 variables in
S1, we further choose 10 variables into 5 pairs randomly, which will be included in S2. Regarding the other
pairs in S2, each time we randomly pick 2 variables from S? with the unscaled weight being 2|Swl|/|S?| for
variables in Swl, |S? \ Swl|/|S?| for the others, then add them as a pair into S2. Once picked, the variables
will be removed from Swl. This process iterates until |Swl| ≤ 5. Regarding the construction of S3, each
time we randomly pick 3 variables from S? with the unscaled weight being 1.5|Swl|/|S?| for variables in
Swl, |S? \ Swl|/|S?| for the others, then add them as a tuple into S3. Once picked, the variables will be
removed from Swl. This process iterates until |Swl| = 0.

G.2 Implementation details of fitting algorithms

Regarding how to obtain the working regression function, there will be four different fitting algorithms for
non-binary responses:

• LASSO : We fit a linear model by 10-fold cross-validated LASSO and output a working regression
function. The subsequent inference step will be quite fast. First, as implied by Algorithm 1, Lαn(µ)
will be set to zero for unselected variables, without any computation. Second, as alluded to in
Section 2.3, we can analytically compute the conditional quantities in Algorithm 1.

• Ridge: We again use 10-fold cross-validation to choose the penalty parameter for Ridge regression.
It is also fast to perform floodgate on, due to the second point mentioned above.

• SAM : We consider additive modelling, for example the sparse additive models (SAM) proposed in
Ravikumar et al. (2009). As suggested by the name, it carries out sparse penalization and our method
will assign Lαn(µ) = 0 to unselected variables, as in lasso.
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• Random Forest : Random forest (Breiman, 2001) is included as a purely nonlinear machine learning
algorithm. While random forest do not generally conduct variable selection, we rank variables based
on the heuristic importance measure and use the top 50 variables to run Algorithm 1 and set Lαn(µ) =
0 for the remaining ones. Remark this is only for the concern of speed and does not have any negative
impact on the inferential validity.

There are two additional fitting algorithms for binary responses: logistic regression with L1 regularization
and L2 regularization, denoted by Binom LASSO and Binom Ridge respectively. Both use 10-fold cross-
validation to choose the penalty parameter.

G.3 Implementation details of ordinary least squares

When the conditional model of Y | X,Z is linear, i.e., E [Y |X,Z] = Xβ + Zθ with (β, θ) ∈ Rp the
coefficients, the mMSE gap for X is closely related to its linear coefficient, formally

I = |β|
√
E[Var(X |Z)].

When the sample size n is greater than the number of variables p, ordinary least squares (OLS) can provide
valid confidence intervals for β. However, there does not seem to exist a non-conservative way to transform
the OLS confidence interval for β into a confidence bound for |β|. So instead, we provide OLS with further
oracle information: the sign of β (we only compare half-widths of non-null covariates, and hence never
construct OLS LCBs when β = 0). In particular, if [LCI, UCI] denotes a standard OLS 2-sided, equal-tailed
1− 2α confidence interval for β, then the OLS LCB for I we use is

LCBOLS =

{
LCI

√
E[Var(X |Z)] if β > 0

−UCI
√

E[Var(X |Z)] if β < 0
(G.4)

which guarantees exact 1−α coverage of I for any nonzero value of β. We again emphasize that, in order
to construct this interval, OLS uses the oracle information of the sign of β (this information is not available
to floodgate in our simulations).

G.4 Plots deferred from the main paper

G.4.1 Effect of sample splitting proportion

Figures 17 and 18 show that in the simulations in Section 4.2, the coverage of floodgate is consistently at
or above the nominal 95% level.
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Figure 17: Coverage for the linear-µ? simulations of Section 4.2. The coefficient amplitude is given in the
plot titles; see Section 4.1 for remaining details. Standard errors are below 0.006 (left) and 0.007 (right).
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Figure 18: Coverage for the nonlinear-µ? simulations of Section 4.2. The sample size n is given in the plot
titles; see Section 4.1 for remaining details. Standard errors are below 0.004 (left) and 0.003 (right).

G.4.2 Effect of covariate dimension

Figures 19 and 20 show that in the simulations in Section 4.1, the coverage of floodgate is consistently at
or above the nominal 95% level.
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Figure 19: Coverage for the linear-µ? simulations of Section 4.3 with floodgate splitting proportion 0.5 (left)
and 0.25 (right). OLS is run on the full sample. p is varied on the x-axis; see Section 4.1 for remaining
details. Standard errors are below 0.006 (left) and 0.006 (right).

G.4.3 Effect of covariate dependence

Figures 21 and 22 show that in the simulations in Section 4.5, the coverage of floodgate is consistently at
or above the nominal 95% level.

G.4.4 Robustness

Figure 23 shows that in the simulations in Section 4.7, the average half-width of floodgate is robust to
estimation error in PX|Z .

H Implementation details of genomics application

As mentioned in Section 2.6, the floodgate approach can be immediately generalized to conduct inference
on the importance of a group of variables. This is practically useful in our application to the genomic data,
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Figure 20: Coverage for the nonlinear-µ? simulations of Section 4.3. The sample size n is given in the plot
titles and p is varied on the x-axis; see Section 4.1 for remaining details. Standard errors are below 0.004
(left) and 0.004 (right).
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Figure 21: Coverage for the linear-µ? simulations of Section 4.5. p is given in the plot titles and the
covariate autocorrelation coefficient is varied on the x-axis; see Section 4.1 for remaining details. Standard
errors are below 0.007 (left) and 0.006 (right).
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Figure 22: Coverage for the nonlinear-µ? simulations of Section 4.5. p is given in the plot titles and the
covariate autocorrelation coefficient is varied on the x-axis; see Section 4.1 for remaining details. Standard
errors are below 0.004 (left) and 0.003 (right).

where we group nearby SNPs whose effects are usually found challenging to be distinguished. Specifically,
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Figure 23: Half-width plot of non-null covariates when the covariate distribution is estimated in-sample
for the linear-µ? (left) and nonlinear-µ? (right) simulations of Section 4.7. See Section 4.1 for remaining
details. Standard errors are below 0.002 (left) and 0.007 (right).

we use the exact same grouping at the same seven resolutions as Sesia et al. (2020b).
Regarding the genotype modelling, we consider the hidden Markov models (HMM) (Scheet and Stephens,

2006), as used in Sesia et al. (2019, 2020b), which provides a good description of the linkage disequilibrium
(LD) structure. We obtain the fitted HMM parameters from Sesia et al. (2020b) on the UK Biobank data.
Since HMM does not offer simple closed form expressions of the conditional quantities in Algorithm 1, we
generate null copies of the genotypes and use them for the Monte Carlo analogue of floodgate. Below we
simply describe the generating procedure. Under the HMM, we denote the covariates by W (genotypes or
haplotypes) and the unobserved hidden states (local ancestries) by A, with the joint distribution over W
denoted by PW , the joint distribution over A denoted by PA, which is the latent Markov chain model. For
a given contiguous group of variables gj , we can sample the null copy of Wgj as follows:

(1) Marginalize out Wgj and recompute the parameters of the new HMM P-gj over W-gj .

(2) Sample the hidden states A-gj by applying the forward-backward algorithm to W-gj , with the new
HMM P-gj .

(3) Given A-gj , sample Agj according to the latent Markov chain model PA.

(4) Sample W̃gj given Agj according to the emission distribution of the group gj in the model of PW .

To see why the above procedure produces a valid null copy of Wgj , consider the following joint distri-
bution, conditioning on W-gj

Pjoint : (Wgj , Agj , A-gj ) |W-gj

If we sample (W̃gj , Agj , A-gj ) from the above joint conditional distribution, without looking at Wgj or Y ,

then W̃gj has the same conditional distribution as Wgj , given W-gj and is conditionally independent from
(Wgj , Y ), and thus is a valid null copy of Wgj . Regarding how to sample from Pjoint, we take advantage of

the HMM structure and sample A-gj , Agj , W̃gj sequentially since

Agj | A-gj ,W-gj
d
= Agj | A-gj , (H.1)

Wgj | Agj , A-gj ,W-gj
d
= Wgj | Agj . (H.2)

Sampling from A-gj |W-gj is feasible since P-gj is still a HMM whenever the group gj is contiguous. Under
the HMM with particular parameterization in Scheet and Stephens (2006), the cost of the forward-backward
algorithm can be reduced, see Sesia et al. (2020b) for more details. We remark that marginalizing out
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Wgj only changes the transition structure around the group gj and the special parameterization over other

variables is still beneficial in terms of the computation cost. Sampling of Agj and W̃gj is computationally
cheap due to (H.1) and (H.2). For a given number of null copies K, we will repeat the steps (2)-(4) for K
times. But we remark the involving sampling probabilities only have to be computed once.

Regarding the quality control and data prepossessing of the UK Biobank data, we follow the Neale
Lab GWAS with application 31063; details can be found on http://www.nealelab.is/uk-biobank. A
few subjects withdrew consent and are removed from the analysis. Our final data set consisted of 361, 128
unrelated subjects and 591, 513 SNPs along 22 chromosomes.

For the platelet count phenotype, the KnockoffZoom analysis (Sesia et al., 2020b) makes several se-
lections over the whole genome at seven different resolution levels. We focus on chromosome 12 and look
at 248 selected groups from their analysis. For a given group of variables, we generate K = 5 null copies
following the null copy generation procedure described above.

We applied floodgate with a 50-50 data split and fitted µ to the first half using the cross-validated
LASSO as in (Sesia et al., 2020b) and included both genotypes (SNPs from chromosomes 1–22) and the
non-genetic variables sex, age and squared age. We centered Y by its sample mean from the first half of
the data (the half used to fit µ) before applying floodgate. Although this changes nothing in theory, it
does improve robustness as small biases in µ(Xi, Zi)− E [µ(Xi, Zi) |Zi] would otherwise get multiplied by
Yi’s mean in the computation of Ri in Algorithm 1.

Although our fitting of a linear model in no way changes the validity of floodgate’s inference of the
completely model-free mMSE gap, it does desensitize the LCB itself to the nonlinearities and interactions
that partially motivated I as an object of inference in the first place. Our reasoning is purely pragmatic:
as the universe of nonlinearities/interactions is exponentially larger than that of linear models, fitting
such models requires either very strong nonlinear/interaction effects or prior knowledge of a curated set
of likely nonlinearities/interactions. It is our understanding that nearly all genetic effects, linear and
nonlinear/interaction alike, tend to be relatively weak, and the authors are not geneticists by training and
thus lack the domain knowledge necessary to leverage the full flexibility of floodgate. Although we were
already able to find substantial heritability for many blocks of SNPs with our default choice of the LASSO,
it is our sincere hope and expectation that geneticists who specialize in the study of platelet count or
similar traits would be able to find even more heritability using floodgate.

We report LCBs for all blocks simultaneously, although computationally we only actually run floodgate
on those selected by Sesia et al. (2020b). Although their selection used all of the data (including the data
we used for floodgate), it does not affect the marginal validity of the LCBs we report, as explained in the
last paragraph of Section 2.6.
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