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Overview

We introduce floodgate, a new inferential approach for variable impor-
tance.
I Focus on an interpretable, sensitive and nonparametric measure of

variable importance: the mMSE gap.
I Provide valid and robust lower confidence bounds (LCB) for the

mMSE gap.
I Can leverage flexible regression algorithms with good predictive

performance to improve inferential accuracy.

Motivation

Setup: data (Y,X,Z) from some joint distribution.
I Y a response variable of interest.
I X a explanatory variable of interest (AKA treatment, covariate,

feature).
I Z := (Z1, · · · , Zp) a set of p further variables (AKA confounders,

nuisance variables).
Question: Is the variable important or not?w�
Go beyond: How important is the variable?

Q1: How to define a good measure of variable importance (MOVI)?
Q2: How to provide inference for it?

A desirable MOVI (of the covariate X) should have
Validity: zero when Y ⊥⊥ X | Z.
Sensitivity: able to detect nonlinear effects and interactions.
Interpretability: interpretable for scientists and practitioners’ use.

A desirable inferential procedure for the MOVI should be:
General Accurate Robust

Our MOVI: the mMSE Gap

The minimum mean squared error (mMSE) gap for variable X is defined
as

I2 = E
[
(Y − E [Y |Z])2

]
− E

[
(Y − E [Y |X,Z])2

]
.

We have
I2 = 0 ⇐⇒ E [Y |X,Z]

a.s.
= E [Y |Z] ,

and the following interpretations:
I Predictive: immediate from above.
I Variance decomposition: I2 = Var (E [Y |X,Z])− Var (E [Y |Z]).
I Causal: I2 = 1

2Ex1,x2i.i.d.∼ PX|Z

[
(E [Y |X = x1, Z]− E [Y |X = x2, Z])2

]
.

I Compact form: I2 = E [Var (E [Y |X,Z] |Z)].

Main Methodology: Floodgate

True regression function µ?(x, z) := E [Y |X = x, Z = z]

⇒ I2 = E [Var(µ?(X,Z) |Z)] = E
[
(µ?(X,Z)− E [µ?(X,Z) |Z])2

]
Challenges:
I µ? unknown.
I Nonlinearity in the above functional.

Possible solution: assume we have a good estimator µ of µ??

The idea of floodgate:
(a) Construct a functional f such that f (µ) ≤ I for any µ.
(b) Know how to obtain LCB L(µ) of f (µ) for any µ.
(c) (Ideally) the functional f also satisfies f (µ?) = I.

Our choice of floodgate functional (to satisfy (a) and (c)):

f (µ) :=
E [Cov(µ?(X,Z), µ(X,Z) |Z)]√

E [Var(µ(X,Z) |Z)]
.

Our assumption (to make (b) possible): PX|Z known (note we also have
robustness analysis and assumption relaxation).
Lemma (A deterministic relationship)
For any µ such that f (µ) exists, f (µ) ≤ I and f (µ?) = I.

Algorithm 1 Floodgate

Input: {(Yi, Xi, Zi)}ni=1, PX|Z, µ, confidence level α ∈ (0, 1).
Compute, for each i ∈ [n], Ri = Yi

(
µ(Xi, Zi) − E [µ(Xi, Zi) |Zi]

)
,

Vi = Var (µ(Xi, Zi) |Zi) and their sample mean (R̄, V̄ ) and sample

covariance matrix Σ̂, and compute s2 = 1
V̄

[(
R̄
2V̄

)2

Σ̂22 + Σ̂11 − R̄
V̄

Σ̂12

]
.

Output: Lower confidence bound Lαn(µ) = max
{

R̄√
V̄
− zαs√

n
, 0
}

, with the
convention that 0/0 = 0.

More computation details:
I µ can be fitted from a separate dataset e.g. via sample splitting.
I Generally, draw X̃ (k), k = 1, · · · , K from PX|Z, conditionally

independently of X, Y then plug-in the Monte Carlo estimators.

Theorem (Asymptotic validity)
Under mild moment conditions on Y and µ(X,Z), we have

P (Lαn(µ) ≤ I) ≥ 1− α−O(n−1/2).

Accuracy: inferential accuracy is directly related to the MSE of “µn”.
Floodgate procedure is invariant respect to a “equivalent” function
class of µ, Sµ = {cµ(x, z) + g(z) : c > 0, g : Rp→ R}.
Under mild moment conditions on Y and noises, for µn with well-
behaved moments,

I − Lαn(µn) = Op

(
inf
µ∈Sµn

E
[
(µ(X,Z)− µ?(X,Z))2

]
+ n−1/2

)
.

Main Methodology: Floodgate

Robustness: floodgate is robust to the estimation error of PX|Z.

Suppose PX|Z unknown, we instead use its estimate Q(n)
X|Z.

Under moment conditions on Y and noises, for µn with well-
behaved moments under both the true distribution and the specified
one, we have

P (Lαn(µn) ≤ I + ∆n) ≥ 1− α−O(n−1/2),

where

∆n ≤ c1

√
E
[
χ2
(
PX|Z ||Q

(n)
X|Z

)]
− c2 E

[
(µ̄n(X,Z)− µ?(X,Z))2

]
where µ̄n is a particular representative of Sµn and χ2(· || ·) denotes
the χ2 divergence.

Application to Genomic Study of Platelet Count
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Figure 1:Colored Chicago plot [1] with the color of each point representing the flood-
gate LCB for the importance of a group of SNPs on Chromosome 12 in the UK
Biobank data at different resolutions (y-axis). Bottom plot shows a zoomed-in re-
gion of strong importance.

Extensions

1. Co-sufficient floodgate relaxes the assumptions to only knowing a model for PX|Z
2. Floodgate for a different measure of variable importance.
3. Inference on group variable importance.
4. Transporting floodgate inference to a different covariate distribution.

5. Adjusting for multiplicity and selection effects.
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