Floodgate: Inference for Model-Free Variable Importance **Bernoulli-IMS One World Symposium 2020**

Lu Zhang, Lucas Janson Department of Statistics, Harvard University

Overview

We introduce floodgate, a new inferential approach for variable importance.

- Focus on an interpretable, sensitive and nonparametric measure of variable importance: the mMSE gap.
- Provide valid and robust lower confidence bounds (LCB) for the mMSE gap.
- Can leverage flexible regression algorithms with good predictive performance to improve inferential accuracy.

Motivation

Setup: data (Y, X, Z) from some joint distribution.

- \blacktriangleright Y a response variable of interest.
- ► X a explanatory variable of interest (AKA treatment, covariate, feature).
- \blacktriangleright $Z := (Z_1, \dots, Z_p)$ a set of p further variables (AKA confounders, nuisance variables).

Question: Is the variable important or not?

Go beyond: How important is the variable?

Q1: How to define a good measure of variable importance (MOVI)? Q2: How to provide inference for it?

A desirable MOVI (of the covariate X) should have

Validity: zero when $Y \perp X \mid Z$.

Sensitivity: able to detect nonlinear effects and interactions. Interpretability: interpretable for scientists and practitioners' use.

A desirable inferential procedure for the MOVI should be: Robust General Accurate

Our MOVI: the mMSE Gap

The minimum mean squared error (mMSE) gap for variable X is defined as

We have

 $\mathcal{I}^{2} = \mathbb{E}\left[\left(Y - \mathbb{E}\left[Y \mid Z\right]\right)^{2}\right] - \mathbb{E}\left[\left(Y - \mathbb{E}\left[Y \mid X, Z\right]\right)^{2}\right].$

 $\mathcal{I}^2 = 0 \iff \mathbb{E}[Y \mid X, Z] \stackrel{a.s.}{=} \mathbb{E}[Y \mid Z],$

and the following interpretations:

- Predictive: immediate from above.
- ► Variance decomposition: $\mathcal{I}^2 = \operatorname{Var}\left(\mathbb{E}\left[Y \mid X, Z\right]\right) \operatorname{Var}\left(\mathbb{E}\left[Y \mid Z\right]\right)$.
- Causal: $\mathcal{I}^2 = \frac{1}{2} \mathbb{E}_{x_1, x_2} \overset{i.i.d.}{\sim} P_{X|Z}} \left| \left(\mathbb{E} \left[Y \mid X = x_1, Z \right] \mathbb{E} \left[Y \mid X = x_2, Z \right] \right)^2 \right|.$
- Compact form: $\mathcal{I}^2 = \mathbb{E} \left[\operatorname{Var} \left(\mathbb{E} \left[Y \mid X, Z \right] \mid Z \right) \right].$

Main Methodology: Floodgate

True regression function $\mu^{\star}(x, z) := \mathbb{E}[Y \mid X = x, Z = z]$ $\Rightarrow \mathcal{I}^2 = \mathbb{E}\left[\operatorname{Var}(\mu^{\star}(X, Z) \mid Z)\right] = \mathbb{E}\left[\left(\mu^{\star}(X, Z) - \mathbb{E}\left[\mu^{\star}(X, Z) \mid Z\right]\right)^2\right]$

Challenges:

- \blacktriangleright μ^{\star} unknown.
- Nonlinearity in the above functional.

Possible solution: assume we have a good estimator μ of μ^* ?

The idea of floodgate:

- (a) Construct a functional f such that $f(\mu) \leq \mathcal{I}$ for any μ .
- (b) Know how to obtain LCB $L(\mu)$ of $f(\mu)$ for any μ .
- (c) (Ideally) the functional f also satisfies $f(\mu^{\star}) = \mathcal{I}$.

Our choice of floodgate functional (to satisfy (a) and (c)):

 $f(\mu) := \frac{\mathbb{E}\left[\operatorname{Cov}(\mu^{\star}(X, Z), \mu(X, Z) \mid Z)\right]}{\sqrt{\mathbb{E}\left[\operatorname{Var}(\mu(X, Z) \mid Z)\right]}}.$

Our assumption (to make (b) possible): $P_{X|Z}$ known (note we also have robustness analysis and assumption relaxation).

Lemma (A deterministic relationship)

For any μ such that $f(\mu)$ exists, $f(\mu) \leq \mathcal{I}$ and $f(\mu^{\star}) = \mathcal{I}$.

Algorithm 1 Floodgate

Input: $\{(Y_i, X_i, Z_i)\}_{i=1}^n$, $P_{X|Z}$, μ , confidence level $\alpha \in (0, 1)$. Compute, for each $i \in [n]$, $R_i = Y_i(\mu(X_i, Z_i) - \mathbb{E}[\mu(X_i, Z_i) | Z_i])$, $V_i = \operatorname{Var}(\mu(X_i, Z_i) | Z_i)$ and their sample mean $(\overline{R}, \overline{V})$ and sample

covariance matrix $\hat{\Sigma}$, and compute $s^2 = \frac{1}{\overline{V}} \left| \left(\frac{\overline{R}}{2\overline{V}} \right)^2 \hat{\Sigma}_{22} + \hat{\Sigma}_{11} - \frac{\overline{R}}{\overline{V}} \hat{\Sigma}_{12} \right|$.

Output: Lower confidence bound $L_n^{\alpha}(\mu) = \max\left\{\frac{\bar{R}}{\sqrt{\bar{V}}} - \frac{z_{\alpha}s}{\sqrt{n}}, 0\right\}$, with the convention that 0/0 = 0.

More computation details:

- \blacktriangleright μ can be fitted from a separate dataset e.g. via sample splitting.
- Generally, draw $\tilde{X}^{(k)}, k = 1, \cdots, K$ from $P_{X|Z}$, conditionally independently of X, Y then plug-in the Monte Carlo estimators.

Theorem (Asymptotic validity)

Under mild moment conditions on Y and $\mu(X, Z)$, we have $\mathbb{P}\left(L_n^{\alpha}(\mu) \leq \mathcal{I}\right) \geq 1 - \alpha - O(n^{-1/2}).$

Accuracy: inferential accuracy is directly related to the MSE of " μ_n ". Floodgate procedure is invariant respect to a "equivalent" function class of μ , $S_{\mu} = \{c\mu(x, z) + g(z) : c > 0, g : \mathbb{R}^p \to \mathbb{R}\}.$ Under mild moment conditions on Y and noises, for μ_n with wellbehaved moments,

 $\mathcal{I} - L_n^{\alpha}(\mu_n) = O_p\left(\inf_{\mu \in S_{\mu_n}} \mathbb{E}\left[(\mu(X, Z) - \mu^{\star}(X, Z))^2\right] + n^{-1/2}\right).$

$$Z) \mid Z \rangle$$

Main Methodology: Floodgate

Robustness: floodgate is robust to the estimation error of $P_{X|Z}$.

Suppose $P_{X|Z}$ unknown, we instead use its estimate $Q_{X|Z}^{(n)}$. Under moment conditions on Y and noises, for μ_n with wellbehaved moments under both the true distribution and the specified one, we have

$$\mathbb{P}\left(L_n^{\alpha}(\mu_n) \leq \mathcal{I}\right)$$

where

$$_{n} \leq c_{1}\sqrt{\mathbb{E}\left[\chi^{2}\left(P_{X|Z} \mid \mid Q\right)\right]}$$

where $\bar{\mu}_n$ is a particular representative of S_{μ_n} and $\chi^2(\cdot || \cdot)$ denotes the χ^2 divergence.

Figure 1:Colored Chicago plot [1] with the color of each point representing the floodgate LCB for the importance of a group of SNPs on Chromosome 12 in the UK Biobank data at different resolutions (y-axis). Bottom plot shows a zoomed-in region of strong importance.

Extensions

- 2. Floodgate for a different measure of variable importance.
- 3. Inference on group variable importance.
- 5. Adjusting for multiplicity and selection effects.

References

- preprint arXiv:2007.01283, 2020.

Acknowledgement: L.Z. is partially supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard, award number #1764269 and the Harvard Quantitative

 $(+\Delta_n) \ge 1 - \alpha - O(n^{-1/2}),$

 $Q_{X|Z}^{(n)}\Big] - c_2 \mathbb{E}\left[(\bar{\mu}_n(X,Z) - \mu^*(X,Z))^2 \right]$

1. Co-sufficient floodgate relaxes the assumptions to only knowing a model for $P_{X|Z}$

4. Transporting floodgate inference to a different covariate distribution.

[1] Matteo Sesia, Eugene Katsevich, Stephen Bates, Emmanuel Candès, and Chiara Sabatti. Multiresolution localization of causal variants across the genome. Nature communications, 11(1):1–10,

[2] Lu Zhang and Lucas Janson. Floodgate: Inference for model-free variable importance. arXiv