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Summary

Setup : data (Y ,X ,Z ).

Y : response variable ; X : the variable of interest ; Z := (Z1, · · · ,Zp) confounders.

Q : how important each covariate (X ) is in this relationship?
A : introduce floodgate, a new inferential approach for variable importance.

Focus on an interpretable, sensitive and nonparametric MOVI : the mMSE gap.

I2 = E
[
(Y − E [Y |Z ])2

]
− E

[
(Y − E [Y |X ,Z ])2

]
.

Provide valid and robust lower confidence bounds for the mMSE gap.

µ? := E [Y |X ,Z ] , f (µ) :=
E [Cov(µ?(X ,Z ), µ(X ,Z ) |Z )]√

E [Var(µ(X ,Z ) |Z )]
, f (µ)≤I for any µ.

Allow flexible regression algorithms to obtain µ, good prediction⇒ good accuracy.

Genomic application to UKBB data : colored “Chicago" plot.

Zhang, Lu, and Lucas Janson. "Floodgate : inference for model-free variable importance." arXiv
preprint arXiv:2007.01283 (2020).

Extensions : relax the assumption ; a different MOVI for binary responses ; group variable
importance ; different covariate distribution ; adjusting for multiplicity and selection effects.
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Motivation

Setup : data (Y ,X ,Z ) from some joint distribution.

Y a response variable of interest

X a explanatory variable of interest (AKA treatment, covariate, feature)

Z := (Z1, · · · ,Zp) a set of p further variables (AKA confounders, nuisance
variables)

Question : is the variable X important or not?

Assuming parametric models : testing whether the coefficients are zero.

Conditional independence testing (without parametric assumption) :

Y ⊥⊥ X | Z

Kernel-based conditional independence tests.
Semi-parametric approaches.
Model-X approaches : model-X knockoffs, conditional knockoffs, conditional
randomization tests, conditional permutation tests, hold-out randomization tests and so
on.
Symmetry idea approaches : Gaussian mirrors and data splitting.

Go beyond : how important each covariate is in this relationship?
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Motivation

Applications : variable ranking, SNP-heritability ...

Confidence intervals on the parameters ;What if no parametric assumption?

1 How to define a good measure of variable importance (MOVI)?

2 How to provide inference for it ?

A desirable MOVI (of the covariate X ) should have

Validity : zero when Y ⊥⊥ X | Z .

Sensitivity : able to detect nonlinear effects and interactions.

Interpretability : interpretable and ready for scientists and practitioners’ use.

A desirable inferential procedure for the MOVI should be

General

Accurate

Robust
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Literature review

Parametric approaches : Bühlmann et al. (2013), Zhang and Zhang (2014),
Javanmard and Montanari (2014), Bühlmann et al. (2015), Dezeure et al. (2017),
Zhang and Cheng (2017), Van de Geer et al. (2014), Nickl et al. (2013), Sur and
Candès (2019), Zhao et al. (2020) ...

Projection approaches : Buja et al. (2015, 2019a,b), Rinaldo et al. (2019), Lee
et al. (2016), Taylor et al. (2014), Berk et al. (2013), Buja and Brown (2014).

Random parameters : Lei et al. (2018), Fisher et al. (2018), Watson and Wright
(2019), Rinaldo et al. (2019).

Semi-parametric approaches : Robins et al. (2008, 2009); Li et al. (2011); Robins
et al. (2017); Newey and Robins (2018), Shah and Peters (2018).

A very recent MOVI : Azadkia and Chatterjee (2019).

Same MOVI as us : Williamson et al. (2017).
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Our target MOVI : the mMSE gap

Definition (mMSE Gap)

The minimum mean squared error (mMSE) gap for variable X is defined as

I2 = E
[
(Y − E [Y |Z ])2

]
− E

[
(Y − E [Y |X ,Z ])2

]
.

I2 = 0 ⇐⇒ E [Y |X ,Z ]
a.s.
= E [Y |Z ]

Predictive : immediate from above.

Variance decomposition : I2 = Var (E [Y |X ,Z ])−Var (E [Y |Z ]).

Causal : I2 = 1
2Ex1,x2

i.i.d.∼ PX|Z

[
(E [Y |X = x1,Z ]− E [Y |X = x2,Z ])2

]
.

Compact form : I2 = E [Var (E [Y |X ,Z ] |Z )].
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How to do inference on I ?

True regression function µ?(x , z) := E [Y |X = x ,Z = z]

⇒ I2 = E [Var(µ?(X ,Z ) |Z )] = E
[
(µ?(X ,Z )− E [µ?(X ,Z ) |Z ])2

]
Challenges :

µ? unknown.

Nonlinearity in the above functional.

Possible solution : assume we have a good estimator µ of µ? ?

Our approach : construct a lower confidence bound (LCB) for I via floodgate, i.e.

construct a functional f such that

f (µ) ≤ I for any µ.

know how to obtain LCB L(µ) of f (µ) for any µ.

(Ideally) the functional f also satisfies f (µ?) = I.
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Floodgate LCB

Our choice of functional : f (µ) :=
E[Cov(µ?(X ,Z ),µ(X ,Z ) | Z )]√

E[Var(µ(X ,Z ) | Z )]

Lemma (Zhang and Janson (2020))

For any µ such that f (µ) exists, f (µ) ≤ I and f (µ?) = I.

Ingredients of our model-X inferential procedure :

1 (Yi ,Xi ,Zi )
n
i=1.

2 µ (can be fitted from a separate dataset e.g. sample splitting).

3 Assume PX |Z known (also have robustness analysis and assumption relaxation).

f (µ) =
E
[
Y
(
µ(X ,Z )− E [µ(X ,Z ) |Z ]

)]√
E [Var (µ(X ,Z ) |Z )]

=
a linear functional of P(Y ,X ,Z )√

a linear functional of PZ

By Delta method, we can construct CLT-based LCB for f (µ) : Lαn (µ) (with
confidence level α).

under certain fitted models, compute E [µ(X ,Z ) |Z ] ,Var (µ(X ,Z ) |Z ) analytically.

Generally, draw X̃ (k), k = 1, · · · ,K from PX |Z , conditionally independently of X ,Y
then plug-in the Monte Carlo estimators.
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Asymptotic validity

Theorem (Zhang and Janson (2020))

Under mild moment conditions on Y and µ(X ,Z ), we have

P (Lαn (µ) ≤ I) ≥ 1− α− O(n−1/2).

Point-wise result : the convergence rate result builds on recent Berry-Esseen type
bounds for Delta method (Pinelis et al., 2016).

Constant in O(n−1/2) has complicated dependence on µ and P(Y ,X ,Z ).

Invariance of the floodgate procedure : e.g. µ(x , z) = ax + g(z), constant only
depends on sign(a) and bivariate distribution of(

Y ,
X − E [X |Z ]√

Var (X − E [X |Z ])

)
.

Suggests floodgate may be robust to µ and high-dimensionality.
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Under mild moment conditions on Y and µ(X ,Z ), we have

P (Lαn (µ) ≤ I) ≥ 1− α− O(n−1/2).

Point-wise result : the convergence rate result builds on recent Berry-Esseen type
bounds for Delta method (Pinelis et al., 2016).

Constant in O(n−1/2) has complicated dependence on µ and P(Y ,X ,Z ).

Invariance of the floodgate procedure : e.g. µ(x , z) = ax + g(z), constant only
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Statistical accuracy

Floodgate procedure is invariant with respect to a “equivalent" function class of µ,

Sµ = {cµ(x , z) + g(z) : c > 0, g : Rp → R}.

Theorem (Zhang and Janson (2020))

Under mild moment conditions on Y and noises, for µn with well-behaved moments,

I − Lαn (µn) = Op

(
inf

µ∈Sµn

E
[
(µ(X ,Z )− µ?(X ,Z ))2

]
+ n−1/2

)
.

Inferential accuracy is directly related to the MSE of µn
1

Good predictive performance =⇒ Good inferential accuracy

1. through the best element of its equivalent class Sµ in terms of MSE
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Robustness

Suppose PX |Z unknown, we instead use its estimate Q(n)
X |Z to run floodgate.

Theorem (Zhang and Janson (2020))

Under moment conditions on Y and noises, for µn with well-behaved moments under
both the true distribution and the specified one, we have

P (Lαn (µn) ≤ I + ∆n) ≥ 1− α− O(n−1/2), (1)

where

∆n ≤ c1

√
E
[
χ2
(

PX |Z ||Q
(n)
X |Z

)]
− c2 E

[
(µ̄n(X ,Z )− µ?(X ,Z ))2

]
(2)

where µ̄n is a particular representative of Sµn and χ2(· || ·) denotes the χ2 divergence.

PX |Z is better estimated than E [Y |X ,Z ] =⇒ 2 Floodgate is robust

2. When I > 0

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 12 / 14



Introduction Main Methodology Genomic Application Summary Références

Robustness

Suppose PX |Z unknown, we instead use its estimate Q(n)
X |Z to run floodgate.

Theorem (Zhang and Janson (2020))

Under moment conditions on Y and noises, for µn with well-behaved moments under
both the true distribution and the specified one, we have

P (Lαn (µn) ≤ I + ∆n) ≥ 1− α− O(n−1/2), (1)

where

∆n ≤ c1

√
E
[
χ2
(

PX |Z ||Q
(n)
X |Z

)]
− c2 E

[
(µ̄n(X ,Z )− µ?(X ,Z ))2

]
(2)

where µ̄n is a particular representative of Sµn and χ2(· || ·) denotes the χ2 divergence.

PX |Z is better estimated than E [Y |X ,Z ] =⇒ 2 Floodgate is robust

2. When I > 0

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 12 / 14



Introduction Main Methodology Genomic Application Summary Références

Application to genomic study of platelet count
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FIGURE – Colored Chicago plot* with the color of each point representing the floodgate LCB for the importance of
a group of SNPs on Chromosome 12 in the UK Biobank data at different resolutions (y-axis). Bottom plot
shows a zoomed-in region of strong importance.

* Sesia, M., Katsevich, E., Bates, S., Candès, E., & Sabatti, C. (2020). Multi-resolution
localization of causal variants across the genome. Nature communications, 11(1), 1-10.
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Takeaways

Floodgate : a new inferential approach for variable importance.

Focus on an interpretable, sensitive and nonparametric measure of variable
importance : the mMSE gap.

Provide valid and robust lower confidence bounds for the mMSE gap.

Allow flexible regression algorithms, good predictive performance leads to good
inferential accuracy.

See more extensions in our paper :

1 Co-sufficient floodgate relaxes the assumptions to only knowing a model for PX |Z

2 Floodgate for a different measure of variable importance.

3 Inference on group variable importance.

4 Transporting floodgate inference to a different covariate distribution.

5 Adjusting for multiplicity and selection effects.

Zhang, Lu, and Lucas Janson. "Floodgate : inference for model-free variable
importance." arXiv preprint arXiv:2007.01283 (2020).

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 14 / 14

https://arxiv.org/abs/2007.01283


Introduction Main Methodology Genomic Application Summary Références

Azadkia, M. and Chatterjee, S. (2019). A simple measure of conditional dependence.
arXiv preprint arXiv :1910.12327.

Berk, R., Brown, L., Buja, A., Zhang, K., Zhao, L., et al. (2013). Valid post-selection
inference. The Annals of Statistics, 41(2) :802–837.

Bühlmann, P. et al. (2013). Statistical significance in high-dimensional linear models.
Bernoulli, 19(4) :1212–1242.

Bühlmann, P., van de Geer, S., et al. (2015). High-dimensional inference in
misspecified linear models. Electronic Journal of Statistics, 9(1) :1449–1473.

Buja, A., Berk, R. A., Brown, L. D., George, E. I., Pitkin, E., Traskin, M., Zhao, L., and
Zhang, K. (2015). Models as approximations-a conspiracy of random regressors and
model deviations against classical inference in regression. Statistical Science,
page 1.

Buja, A. and Brown, L. (2014). Discussion :" a significance test for the lasso". The
Annals of Statistics, 42(2) :509–517.

Buja, A., Brown, L., Berk, R., George, E., Pitkin, E., Traskin, M., Zhang, K., Zhao, L.,
et al. (2019a). Models as approximations i : Consequences illustrated with linear
regression. Statistical Science, 34(4) :523–544.

Buja, A., Brown, L., Kuchibhotla, A. K., Berk, R., George, E., Zhao, L., et al. (2019b).
Models as approximations ii : A model-free theory of parametric regression.
Statistical Science, 34(4) :545–565.

Dezeure, R., Bühlmann, P., and Zhang, C.-H. (2017). High-dimensional simultaneous
inference with the bootstrap. Test, 26(4) :685–719.

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 14 / 14



Introduction Main Methodology Genomic Application Summary Références

Fisher, A., Rudin, C., and Dominici, F. (2018). Model class reliance : Variable
importance measures for any machine learning model class, from the” rashomon”
perspective. arXiv preprint arXiv :1801.01489, 68.

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing
for high-dimensional regression. The Journal of Machine Learning Research,
15(1) :2869–2909.

Lee, J. D., Sun, D. L., Sun, Y., Taylor, J. E., et al. (2016). Exact post-selection inference,
with application to the lasso. The Annals of Statistics, 44(3) :907–927.

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman, L. (2018).
Distribution-free predictive inference for regression. Journal of the American
Statistical Association, 113(523) :1094–1111.

Li, L., Tchetgen, E. T., van der Vaart, A., and Robins, J. M. (2011). Higher order
inference on a treatment effect under low regularity conditions. Statistics &
probability letters, 81(7) :821–828.

Newey, W. K. and Robins, J. R. (2018). Cross-fitting and fast remainder rates for
semiparametric estimation. arXiv preprint arXiv :1801.09138.

Nickl, R., Van De Geer, S., et al. (2013). Confidence sets in sparse regression. The
Annals of Statistics, 41(6) :2852–2876.

Pinelis, I., Molzon, R., et al. (2016). Optimal-order bounds on the rate of convergence
to normality in the multivariate delta method. Electronic Journal of Statistics,
10(1) :1001–1063.

Rinaldo, A., Wasserman, L., G’Sell, M., et al. (2019). Bootstrapping and sample
splitting for high-dimensional, assumption-lean inference. The Annals of Statistics,
47(6) :3438–3469.

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 14 / 14



Introduction Main Methodology Genomic Application Summary Références

Robins, J., Li, L., Tchetgen, E., van der Vaart, A., et al. (2008). Higher order influence
functions and minimax estimation of nonlinear functionals. In Probability and
statistics : essays in honor of David A. Freedman, pages 335–421. Institute of
Mathematical Statistics.

Robins, J., Tchetgen, E. T., Li, L., and van der Vaart, A. (2009). Semiparametric
minimax rates. Electronic journal of statistics, 3 :1305.

Robins, J. M., Li, L., Mukherjee, R., Tchetgen, E. T., van der Vaart, A., et al. (2017).
Minimax estimation of a functional on a structured high-dimensional model. The
Annals of Statistics, 45(5) :1951–1987.

Shah, R. D. and Peters, J. (2018). The hardness of conditional independence testing
and the generalised covariance measure. arXiv preprint arXiv :1804.07203.

Sur, P. and Candès, E. J. (2019). A modern maximum-likelihood theory for
high-dimensional logistic regression. Proceedings of the National Academy of
Sciences, 116(29) :14516–14525.

Taylor, J., Lockhart, R., Tibshirani, R. J., and Tibshirani, R. (2014). Exact post-selection
inference for forward stepwise and least angle regression. arXiv preprint
arXiv :1401.3889, 7 :10–1.

Van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R., et al. (2014). On asymptotically
optimal confidence regions and tests for high-dimensional models. The Annals of
Statistics, 42(3) :1166–1202.

Watson, D. S. and Wright, M. N. (2019). Testing conditional predictive independence in
supervised learning algorithms. arXiv preprint arXiv :1901.09917.

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 14 / 14



Introduction Main Methodology Genomic Application Summary Références

Williamson, B. D., Gilbert, P. B., Simon, N., and Carone, M. (2017). Nonparametric
variable importance assessment using machine learning techniques. UW
Biostatistics Working Paper Series. Working Paper 422.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional
parameters in high dimensional linear models. Journal of the Royal Statistical
Society : Series B (Statistical Methodology), 76(1) :217–242.

Zhang, L. and Janson, L. (2020). Floodgate : Inference for model-free variable
importance. arXiv preprint arXiv :2007.01283.

Zhang, X. and Cheng, G. (2017). Simultaneous inference for high-dimensional linear
models. Journal of the American Statistical Association, 112(518) :757–768.

Zhao, Q., Sur, P., and Candes, E. J. (2020). The asymptotic distribution of the mle in
high-dimensional logistic models : Arbitrary covariance. arXiv preprint
arXiv :2001.09351.

Lu Zhang @Harvard STAT Bernoulli-IMS One World Symposium 2020 August 26, 2020 14 / 14


	Introduction
	Main Methodology
	Genomic Application
	Summary
	Références

