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Abstract

Variable selection on the large-scale networks has been extensively studied in the liter-
ature. While most of the existing methods are limited to the local functionals especially
the graph edges, this paper focuses on selecting the discrete hub structures of the net-
works. Specifically, we propose an inferential method, called StarTrek filter, to select the
hub nodes with degrees larger than a certain thresholding level in the high dimensional
graphical models and control the false discovery rate (FDR). Discovering hub nodes in
the networks is challenging: there is no straightforward statistic for testing the degree
of a node due to the combinatorial structures; complicated dependence in the multiple
testing problem is hard to characterize and control. In methodology, the StarTrek filter
overcomes this by constructing p-values based on the maximum test statistics via the
Gaussian multiplier bootstrap. In theory, we show that the StarTrek filter can control
the FDR by providing accurate bounds on the approximation errors of the quantile esti-
mation and addressing the dependence structures among the maximal statistics. To this
end, we establish novel Cramér-type comparison bounds for the high dimensional Gaus-
sian random vectors. Comparing to the Gaussian comparison bound via the Kolmogorov
distance established by Chernozhukov et al. (2014), our Cramér-type comparison bounds
establish the relative difference between the distribution functions of two high dimen-
sional Gaussian random vectors, which is essential in the theoretical analysis of FDR
control. Moreover, the StarTrek filter can be applied to general statistical models for
FDR control of discovering discrete structures such as simultaneously testing the spar-
sity levels of multiple high dimensional linear models. We illustrate the validity of the
StarTrek filter in a series of numerical experiments and apply it to the genotype-tissue
expression dataset to discover central regulator genes.

Keywords. Graphical models, multiple testing, false discovery rate control, combina-
torial inference, Gaussian multiplier bootstrap, comparison bounds.

1 Introduction

Graphical models are widely used for real-world problems in a broad range of fields, including
social science, economics, genetics, and computational neuroscience (Newman et al., 2002; Lus-
combe et al., 2004; Rubinov and Sporns, 2010). Scientists and practitioners aim to understand the
underlying network structure behind large-scale datasets. For a high-dimensional random vector
X = (X1, · · · ,Xd) ∈ Rd, we let G = (V, E) be an undirected graph, which encodes the conditional
dependence structure among X. Specifically, each component of X corresponds to some vertex
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in V = {1, 2 · · · , d}, and (j, k) /∈ E if and only if Xj and Xk are conditionally independent given
the rest of variables. Many existing works in the literature seek to learn the structure of G via
estimating the weight matrix Θ. For example, Meinshausen and Bühlmann (2006); Yuan and Lin
(2007); Friedman et al. (2008); Rothman et al. (2008); Peng et al. (2009); Lam and Fan (2009);
Ravikumar et al. (2011); Cai et al. (2011); Shen et al. (2012) focus on estimating the precision
matrix in a Gaussian graphical model. Further, there is also a line of work developing method-
ology and theory to assess the uncertainty of edge estimation, i.e., constructing hypothesis tests
and confidence intervals on the network edges, see Cai and Ma (2013); Gu et al. (2015); Ren et al.
(2015); Cai and Zhang (2016); Janková and van de Geer (2017); Yang et al. (2018); Feng and Ning
(2019); Ding and Zhou (2020). Recently, simultaneously testing multiple hypotheses on edges of
the graphical models has received increasing attention (Liu, 2013; Cai et al., 2013; Xia et al., 2015,
2018; Li and Maathuis, 2019; Eisenach et al., 2020).

Most of the aforementioned works formulate the testing problems based on continuous param-
eters and local properties. For example, Liu (2013) proposes a method to select edges in Gaussian
graphical models with asymptotic FDR control guarantees. Testing the existence of edges concerns
the local structure of the graph. Under certain modeling assumptions, its null hypothesis can be
translated into a single point in the continuous parameter space, for example, Θjk = 0 where Θ is
the precision matrix or the general weight matrix. However, for many scientific questions involving
network structures, we need to detect and infer discrete and combinatorial signals in the networks,
which does not follow from single edge testing. For example, in the study of social networks, it is
interesting to discover active and impactful users, usually called “hub users,” as they are connected
to many other nodes in the social network (Ilyas et al., 2011; Lee et al., 2019). In gene co-expression
network analysis, identifying central regulators/hub genes (Yuan et al., 2017; Liu et al., 2019b,a)
is known to be extremely useful to the study of progression and prognosis of certain cancers and
can support the treatment in the future. In neuroscience, researchers are interested in identifying
the cerebral areas which are intensively connected to other regions (Shaw et al., 2008; van den
Heuvel and Sporns, 2013; Power et al., 2013) during certain cognitive processes. The discovery of
such central/hub areas can provide scientists better understanding of the mechanisms of human
cognition.

Motivated by these applications in various areas, in this paper, we consider the hub node
selection problem from the network models. In specific, given a graph G = (V, E), where V is the
vertex set and E ⊆ V × V is the edge set, we consider multiple hypotheses on whether the degree
of some node j ∈ V exceeds a given threshold kτ :

H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ .

Throughout the paper, these nodes with large degrees will be called hub nodes. For each j ∈ [d],
let ψj = 1 if H0j is rejected and ψj = 0 otherwise. When selecting hub nodes, we would like to
control the false discovery rate, as defined below:

FDR = E

[ ∑
j∈H0

ψj

max
{∑d

j=1 ψj , 1
}] ,

where H0 = {j | degree of node j < kτ}. Remark the hypotheses H0j , j ∈ [d] are not based on
continuous parameters. They instead involve the degrees of the nodes, which are intrinsically dis-
crete/combinatorial functionals. To the best of our knowledge, there is no existing literature study-
ing such combinatorial variable selection problems. The most relevant work turns out to be Lu et al.
(2017), which proposes a general framework for inference about graph invariants/combinatorial
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quantities on undirected graphical models. However, they study single hypothesis testing and have
to decide which subgraph to be tested before running the procedure.

The combinatorial variable selection problems bring many new challenges. First, most of the
existing work focus on testing continuous parameters (Liu, 2013; Javanmard and Montanari, 2013,
2014a,b; Belloni et al., 2014; Van de Geer et al., 2014; Xia et al., 2015, 2018; Javanmard and
Javadi, 2019; Sur and Candès, 2019; Zhao et al., 2020). For discrete functionals, it is more difficult
to construct appropriate test statistics and estimate its quantile accurately, especially in high
dimensions. Second, many multiple testing procedures rely on an independence assumption (or
certain dependence assumptions) on the null p-values (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001; Benjamini, 2010). However, the single hypothesis here is about the global
property of the graph, which means that any reasonable test statistic has to involve the whole
graph. Therefore, complicated dependence structures exist inevitably, which presents another layer
of difficulty for controlling the false discoveries. Now we summarize the motivating question for this
paper: how to develop a combinatorial selection procedure to discover nodes with large degrees on
a graph with FDR control guarantees?

This paper introduces the StarTrek filter to select hub nodes. The filter is based on the max-
imum statistics, whose quantiles are approximated by the Gaussian multiplier bootstrap proce-
dure. Briefly speaking, the Gaussian multiplier bootstrap procedure estimates the distribution of
a given maximum statistic of general random vectors with unknown covariance matrices by the
distribution of the maximum of a sum of the conditional Gaussian random vectors. The valid-
ity of high dimensional testing problems, such as family-wise error rate (FWER) control, relies
on the non-asymptotic bounds of the Kolmogorov distance between the true distribution of the
maximum statistics and the Gaussian multiplier bootstrap approximation, which is established in
Chernozhukov et al. (2013). However, in order to control the FDR in the context of combinatorial
variable selection, a more refined characterization of the quantile approximation errors is required.
In specific, we need the so called Cramér-type comparison bounds quantifying the accuracy of the
p-values in order to control the FDR in the simultaneous testing procedures (Chang et al., 2016).
In our context, consider two centered Gaussian random vectors U, V ∈ Rd with different covari-
ance matrices ΣU , ΣV and denote the `∞ norms of U, V by ||U ||∞, ||V ||∞ respectively, then the

Cramér-type comparison bounds aim to control the relative error
∣∣∣P(||U ||∞>t)
P(||V ||∞>t) − 1

∣∣∣ for certain range

of t. Comparing to the Kolmogorov distance supt∈R |P(||U ||∞ > t)− P(||V ||∞ > t)| (Chernozhukov
et al., 2015), the Cramér-type comparison bound leads to the relative error between two cumulative
density functions, which is necessary to guarantee the FDR control. In specific, we show in this
paper a novel Cramér-type Gaussian comparison bound

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O

(
min

{
(log d)5/2∆1/2

∞ ,
∆0 log d

p

})
, (1.1)

for some constant C0 > 0, where ∆∞ := ||ΣU −ΣV ||max is the entrywise maximum norm difference
between the two covariance matrices, ∆0 := ||ΣU − ΣV ||0 with ‖·‖0 being the entrywise `0-norm
of the matrix, and p is the number of connected subgraphs in the graph whose edge set E =
{(j, k) : ΣU

jk 6= 0 or ΣV
jk 6= 0}. This comparison bound in (1.1) characterizes the relative errors

between Gaussian maxima via two types of rates: the `∞-norm ∆∞ and the `0-norm ∆0. This
implies a new insight that the Cramér type bound between two Gaussian maxima is small as long
as either their covariance matrices are uniformly close or only sparse entries of the two covariance
matrices differ. As far as we know, the second type of rate in (1.1) has not been developed even in
Kolmogorov distance results of high dimensional Gaussian maxima. In the study of FDR control,
we need both types of rates: the ∆∞ rate is used to show that the Gaussian multiplier bootstrap
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procedure is an accurate approximation for the maximum statistic quantiles and the ∆0 rate is
used to quantify the complicated dependence structure of the p-values for the single tests on the
degree of graph nodes. In order to prove the Cramér-type comparison bound in (1.1), we develop
two novel theoretic techniques to prove the two types of rates separately. For the ∆∞ rate, we
reformulate the Slepian’s interpolation (Slepian, 1962) into an ordinary differential inequality such
that the relative error can be controlled via the Grönwall’s inequality (Grönwall, 1919). To control
the ∆0 rate, the anti-concentration inequality of Gaussian maxima developed in Chernozhukov
et al. (2015) is no longer sufficient, we establish a new type of anti-concentration inequality for
the derivatives of the soft-max of high dimensional Gaussian vectors. The existing works on the
Cramér type comparison bounds such as Liu and Shao (2010, 2014); Chang et al. (2016) does not
cover the high dimensional maximum statistics. Therefore, their techniques can not be directly
extended to our case. To the best of our knowledge, it is the first time in our paper to prove the
Cramér-type Gaussian comparison bounds (1.1) for high dimensional Gaussian maxima.

In summary, our paper makes the following major contributions. First, we develop a novel
StarTrek filter to select combinatorial statistical signals: the hub nodes with the FDR control. This
procedure involves maximum statistic and Gaussian multiplier bootstrap for quantile estimation.
Second, in theory, the proposed method is shown to be valid for many different models with the
network structures. In this paper, we provide two examples, the Gaussian graphical model and
the bipartite network in the multiple linear models. Third, we prove a new Cramér-type Gaussian
comparison bound with two types of rates: the maximum norm difference and `0 norm difference.
These results are quite generic and has its own significance in the probability theory.

1.1 Related work

Canonical approaches to FDR control and multiple testing (Benjamini and Hochberg, 1995; Ben-
jamini and Yekutieli, 2001; Benjamini, 2010) require that valid p-values are available, and they
only allow for certain forms of dependence between these p-values. However, obtaining asymptotic
p-values with sufficient accuracy is generally non-trivial for high dimensional hypothesis testing
problems concerning continuous parameters (Javanmard and Montanari, 2013, 2014a,b; Belloni
et al., 2014; Van de Geer et al., 2014; Sur and Candès, 2019; Zhao et al., 2020), not even to mention
discrete/combinatorial functionals.

Recently, there is a line of work conducting variable selection without needing to act on a set of
valid p-values, including Barber and Candès (2015, 2019); Candès et al. (2018); Xing et al. (2019);
Dai et al. (2020a,b). These approaches take advantage of the symmetry of the null test statistics
and establish FDR control guarantee. As their single hypothesis is often formulated as conditional
independence testing, it is challenging to apply those techniques to select discrete signals for the
problem studied in this paper.

Another line of work develops multiple testing procedures based on asymptotic p-values for
specific high dimensional models (Liu, 2013; Liu and Luo, 2014; Javanmard and Javadi, 2019; Xia
et al., 2015, 2018; Liu et al., 2020). Among them, Liu (2013) studies the edge selection problem on
Gaussian graphical models, which turns out to be the most relevant work to our paper. However,
their single hypothesis is about the local property of the graph. Our problem of discovering nodes
with large degrees concerns the global property of the whole network, therefore requiring far more
work.

There exists some recent work inferring combinatorial functionals. For example, the method
proposed in Ke et al. (2020) provides a confidence interval for the number of spiked eigenvalues
in a covariance matrix. Jin et al. (2020) focuses on estimating the number of communities in a
network and yields confidence lower bounds. Neykov et al. (2019); Lu et al. (2017) propose a
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general framework for conducting inference on graph invariants/combinatorial quantities, such as
the maximum degree, the negative number of connected subgraphs, and the size of the longest
chain of a given graph. Shen and Lu (2020) develops methods for testing the general community
combinatorial properties of the stochastic block model. Regarding the hypothesis testing problem,
all these works only deal with a single hypothesis and establish asymptotic type-I error rate control.
While simultaneously testing those combinatorial hypotheses is also very interesting and naturally
arises from many practical problems.

1.2 Outline

In Section 2, we set up the general testing framework and introduce the StarTrek filter for selecting
hub nodes. In Section 3, we present our core probabilistic tools: Cramér-type Gaussian compar-
ison bounds in terms of maximum norm difference and `0 norm difference. To offer a relatively
simpler illustration of our generic theoretical results, we first consider the hub selection problem
on a bipartite network (multitask regression with linear models). Specifically, the input of the
general StarTrek filter is chosen to be the estimators and quantile estimates described in Section
4. Applying the probabilistic results under this model, we establish FDR control guarantees under
certain conditions. Then we move to the Gaussian graphical model in Section 5. In Section 6, we
demonstrate StarTrek’s performance through empirical simulations and a real data application.

1.3 Notations

Let φ(x),Φ(x) be the probability density function (PDF) and the cumulative distribution function
(CDF) respectively of the standard Gaussian distribution and denote Φ̄(x) = 1− Φ(x). Let 1d be
the vector of ones of dimension d. We use 1(·) to denote the indicator function of a set and | · | to
denote the cardinality of a set. For two sets A and B, denote their symmetric difference by A	B,
i.e., A 	 B = (A \ B) ∪ (B \ A); let A × B be the Cartesian product. For two positive sequences
{xn}∞n=1 and {yn}∞n=1, we say xn = O (yn) if xn ≤ Cyn holds for any n with some large enough
C > 0. And we say xn = o (yn) if xn/yn → 0 as n → ∞. For a sequence of random variables
{Xn}∞n=1 and a scalar a, we say Xn ≤ a+ oP(1) if for all ε > 0, limn→∞ P (Xn − a > ε) = 0. Let [d]
denote the set {1, . . . , d}. The `∞ norm and the `1 norm on Rd are denoted by || · ||∞ and || · ||1
respectively. For a random vector X, let ||X||∞ be its `∞ norm. For a matrix A ∈ Rd1×d2 , we denote
its minimal and maximal eigenvalues by λmin(A), λmax(A) respectively, the elementwise max norm
by ‖A‖max = maxi∈[d1],j∈[d2] |Aij | and the elementwise `0 norm by ‖A‖0 =

∑
i∈[d1],j∈[d2] 1(Aij 6= 0).

Throughout this paper, C,C ′, C ′′, C0, C1, C2, . . . are used as generic constants whose values may
vary across different places.

2 Methodology

Before introducing our method, we set up the problem with more details. Specifically, we consider
a graph G = (V1,V2, E) with the node sets V1,V2 and the edge set E . Let d1 = |V1|, d2 = |V2|
and denote its weight matrix by Θ ∈ Rd1×d2 . In the undirected graph where V1 = V2 := V, Θ is
a square matrix and its element Θjk is nonzero when there is an edge between node j and node
k, zero when there is no edge. In a bipartite graph where V1 6= V2, elements of Θ describe the
existence of an edge between node j in V1 and node k in V2. Without loss of generality, we focus
on one of the node sets and denote it by V with |V| := d. We would like to select those nodes
among V whose degree exceeds a certain threshold kτ . And the selection problem is equivalent to

5



simultaneously testing d hypotheses:

H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ , (2.1)

for j ∈ [d]. Let ψj = 1 if H0j is rejected and ψj = 0 otherwise, then for some multiple testing
procedure with output {ψj}j∈[d], the false discovery proportion (FDP) and FDR can be defined as
below:

FDP =

∑d
j∈H0

ψj

max
{

1,
∑d

j=1 ψj

} , FDR := E[FDP],

where H0 = {j | degree of node j < kτ}. We aim to propose a multiple testing procedure such that
the FDP or FDR can be controlled at a given level 0 < q < 1.

We illustrate the above general setup in two specific examples. In multitask regression with
linear models, we are working with the bipartite graph case, then the weight matrix Θ corresponds
to the parameter matrix whose row represents the linear coefficients for one given response variable.
Given a threshold kτ , we want to select those rows (response variables) with `0 norm being at least
kτ . In the context of Gaussian graphical models where V1 = V2, Θ represents the precision matrix,
and we want to select those hub nodes i.e., whose degree is larger than or equal to kτ .

2.1 StarTrek filter

Letting Θj be the j-th row of Θ and Θj,−j be the vector Θj excluding its j-th element, we formulate
the testing problem for each single node as below,

H0j : ‖Θj,−j‖0 < kτ v.s. H1j : ‖Θj,−j‖0 ≥ kτ .

To test the above hypothesis, we need some estimator of the weight matrix Θ. In Gaussian graphical
model, it is natural to use the estimator of a precision matrix. In the bipartite graph (multiple
response model), estimated parameter matrix will suffice. Denote this generic estimator by Θ̃
(without causing confusion in notation), the maximum test statistic over a given subset E of V ×V
will be

TE := max
(j,k)∈E

√
n
∣∣∣Θ̃jk

∣∣∣
and its quantile is defined as c(α,E) = inf {t ∈ R | P (TE ≤ t) ≥ 1− α}, which is often unknown.
Assume it can be estimated by ĉ(α,E) from some procedure such as the Gaussian multiplier boot-
strap, a generic method called skip-down procedure can be used, which was originally proposed in
Lu et al. (2017) for testing a family of monotone graph invariants. When applied to the specific
degree testing problem, it leads to the following algorithm.

Algorithm 1 Skip-down Method in Lu et al. (2017) (for testing the degree of node j)

Input: {Θ̃e}e∈V×V , significance level α.
Initialize t = 0, E0 = {(j, k) : k ∈ [d], k 6= j}.
repeat
t← t+ 1;
Select the rejected edges R ← {(j, k) ∈ Et−1 |

√
n|Θ̃jk| > ĉ(α,Et−1)};

Et ← Et−1\R;
until |Ect | ≥ k or R = ∅
Output: ψj,α = 1 if |Ect | ≥ k and ψj,α = 0 otherwise.
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To conduct the node selection over the whole graph, we need to determine an appropriate threshold
α̂ then reject H0j if ψj,α̂ = 1. A desirable choice of α̂ should be able to discover as many as hub
nodes with the FDR remaining controlled under the nominal level q. For example, if the BHq
procedure is considered, α̂ can be defined as follows:

α̂ = sup

α ∈ (0, 1) :
αd

max
{

1,
∑

j∈[d] ψj,α

} ≤ q
 . (2.2)

The above range of α is (0, 1), it will be very computationally expensive if we do an exhaustive
search since for each α, we have to recompute the quantiles ĉ(α,E) for a lot of sets E.

We overcome the computational difficulty and propose a efficient procedure called StarTrek
filter, which is presented in Algorithm 2. Remark it only involves estimating kτ different quantiles

Algorithm 2 StarTrek Filter

Input: {Θ̃e}e∈V×V , nominal FDR level q.
for j ∈ [d] do

We order the elements in {|Θ̃j`| : ` 6= j} as |Θ̃j,(1)| ≥ |Θ̃j,(2)| ≥ . . . ≥ |Θ̃j,(d−1)|, where |Θ̃j,(`)|
is the `th largest entry. Compute αj = max1≤s≤kτ ĉ

−1(
√
n|Θ̃j,(s)|, E

(s)
j ) where E

(s)
j := {(j, `) :

` 6= j, |Θ̃j`| ≤ |Θ̃j,(s)|}.
end for
Order αj as α(1) ≤ α(2) ≤ · · · ≤ α(d) and set α(0) = 0, let jmax = max{0 ≤ j ≤ d : α(j) ≤ qj/d}.
Output: S = {j : αj ≤ α(jmax)} if jmax > 0; S = ∅ otherwise.

of some maximum statistics per node, which is more efficient than the Skip-down procedure (Lu
et al., 2017) in terms of computation.

2.2 Accuracy of approximate quantiles

Before diving into the theoretical results, we pause to give specific forms of the estimator of Θ and
how to compute the estimated quantiles of the maximum statistic. Take the Gaussian graphical

model as an example, suppose that X1, . . . ,Xn
i.i.d.∼ Nd(0,Σ). Let Θ = Σ−1, which will have the

same `0 elementwise norm as the adjacency matrix Θ. Denote ek be the kth canonical basis in Rd,
we consider the following one-step estimator of Θjk,

Θ̂d
jk := Θ̂jk −

Θ̂>j

(
Σ̂Θ̂k − ek

)
Θ̂>j Σ̂j

, (2.3)

where Θ̂ could be either the graphical Lasso (GLasso) estimator (Friedman et al., 2008) or the

CLIME estimator (Cai et al., 2011). Let Θ̃d
jk := Θ̂d

jk/
√

Θ̂d
jjΘ̂

d
kk and the standardized version

{Θ̃d
e}V×V will be the input {Θ̃e}V×V of Algorithm 2. Then the maximum test statistics (over the

subset E) is defined as TE = max
(j,k)∈E

√
n|Θ̃d

jk|. To estimate its quantile, we construct the following

Gaussian multiplier bootstrap

TBE := max
(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣ n∑
i=1

Θ̂>j

(
XiX

>
i Θ̂k − ek

)
ξi

∣∣∣∣, (2.4)
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where ξi
i.i.d.∼ N(0, 1), which produces ĉ(α,E) = inf

{
t ∈ R : Pξ

(
TBE ≤ t

)
≥ 1− α

}
as the quantile

estimate. We also denote the standardized true precision matrix (Θjk/
√

ΘjjΘkk)j,k∈[d] by Θ?.
The theoretical results for Gaussian multiplier bootstrap developed in Chernozhukov et al. (2013)
basically imply the above quantile estimates are accurate in the following sense:

Lemma 2.1. Suppose Θ ∈ U(M, s, r0) and (log(dn))7/n + s2(log dn)4/n = o(1), for any edge set
E ⊆ V × V, we have

lim
(n,d)→∞

sup
Θ∈U(M,s,r0)

sup
α∈(0,1)

∣∣∣∣P(max
e∈E

√
n|Θ̃d

e −Θ?
e| > ĉ(α,E)

)
− α

∣∣∣∣ = 0. (2.5)

where Θ̃d
e is the standardized version of the one-step estimator (2.3).

Note that U(M, s, r0) denotes the parameter space of precision matrices and is defined as below:

U(M, s, r0) =
{

Θ ∈ Rd×d
∣∣λmin(Θ) ≥ 1/r0, λmax(Θ) ≤ r0,max

j∈[d]
‖Θj‖0 ≤ s, ‖Θ‖1 ≤M

}
.

The proof of Lemma 2.1 can be found in Appendix D.2. However, Lemma 2.1 is not sufficient for
our multiple testing problem. Generally speaking, the probabilistic bounds in Chernozhukov et al.
(2013) are in terms of Kolmogorov distance, which only provides a uniform characterization for
the deviation behaviors. Their results can be used to establish FWER control for global testing
problems based on the maximum test statistics. However, in order to establish FDR control, we
have to show that the estimation of number of false discoveries is sufficiently accurate enough in
the following sense, i.e., uniformly over certain range of α,

αd0∑
j∈H0

ψj,α
→ 1, in probability

where H0 = {j : ‖Θj,−j‖0 < kτ}. The above result is different from the one needed for FWER
control: E [ψj,α] = α+o(1), j ∈ H0. In the context of our node selection problem, it can be reduced
to the following,∣∣∣∣∣

∑
j∈H0

1(maxe∈E
√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,E))

d0α
− 1

∣∣∣∣∣→ 0 in probability

uniformly over certain range of α for some subset E. The above ratio is closedly related to the ratio
in Cramér-type moderation deviation results (Liu and Shao, 2010, 2014; Liu, 2013). To this end,
we establish the Cramér-type deviation bounds for the Gaussian multiplier bootstrap procedure.
This type of results is built on two types of Cramér-type Gaussian comparison bounds, which are
presented in Section 3.

3 Cramér-type comparison bounds for Gaussian maxima

In this section, we present the theoretic results on the Cramér-type comparison bounds for Gaus-
sian maxima. Let U, V ∈ Rd be two centered Gaussian random vectors with different covariance
matrices ΣU = (σUjk)1≤j,k≤d,Σ

V = (σVjk)1≤j,k≤d. Recall that the maximal difference of the covari-

ance matrices is ∆∞ := ||ΣU −ΣV ||max and the elementwise `0 norm difference of the covariance
matrices is denoted by ∆0 :=

∥∥ΣU −ΣV
∥∥

0
=
∑

j,k∈[d] 1(σUjk 6= σUjk). The Gaussian maxima of U
and V are denoted as ||U ||∞ and ||V ||∞. Now we present a Cramér-type comparison bound (CCB)
between Gaussian maxima in terms of the maximum norm difference ∆∞.
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Theorem 3.1 (CCB with maximum norm difference). Suppose (log d)5∆∞ = O(1), then we have

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O
(

(log d)5/2∆1/2
∞

)
, (3.1)

for some constant C0 > 0.

Remark 3.1. We can actually prove a more general form (see Theorem B.2 in the appendix) of the
upper bound on the above term, without the assumption on ∆∞. In fact, we bound the right hand side

of (3.1) as M3(log d)3/2A(∆∞)eM3(log d)3/2A(∆∞), where A(∆∞) = M1 log d∆
1/2
∞ exp (M2 log2 d∆

1/2
∞ )

with the constants M1,M2 only depending on the variance terms min1≤j≤d{σUjj , σVjj},max1≤j≤d{σUjj , σVjj}
and M3 being a universal constant.

When applying Theorem 3.1 to Gaussian multiplier bootstrap, ||∆||∞ actually controls the
maximum differences between the true covariance matrix and the empirical covariance matrix.
Based on the bound of ||∆||∞, we can show that the Cramér-type comparison bound in (3.1) will
be O((log d)3/2n−1/4) with high probability.

The proof can be found in Appendix B.1. The above result bounds the relative difference
between the distribution functions of the two Gaussian maxima. Compared with the bound in
terms of Kolmogorov distance, it has more refined characterization when t is large, which benefits
from our iterative use of the Slepian interpolation. We denote the interpolation between U and
V as W (s) =

√
sU +

√
1− sV, s ∈ [0, 1] and let Qt(s) = P(||W (s)||∞ > t). Existing results

(Chernozhukov et al., 2013, 2014) quantify the difference between Qt(1) and Qt(0) uniformly over
t ∈ R, which leads to a bound on the Kolmogorov distance between Gaussian maxima. Our main
innovation is to consider Rt(s) = Qt(s)/Qt(0)− 1 and show that for any given t, Rt : s ∈ [0, 1] 7→
|Rt(s)| is a contraction mapping with 0 being its fixed point. Specifically, we have the following
upper bound on |Rt(s)|,

|Rt(s)| ≤ AB
∫ s

0
|Rt(µ)|dµ+AB · s+A,

where AB and A can be controlled via the bound on the maximal difference of the covariance
matrices ∆∞ and converge to 0 under certain conditions. By Grönwall’s inequality (Grönwall,
1919), we then derive the bound on Rt(1) explicitly in terms of A and B, which finally lead to the
desired Cramér-type comparison bound in (3.1).

The above theorem is a key ingredient for deriving Cramér-type deviation results for the Gaus-
sian multiplier bootstrap procedure. However, in certain situations, comparison bounds in terms of
maximum norm difference may not be appropriate. There exist cases where the covariance matrices
of two Gaussian random vectors are not uniformly closed to each other, but have lots of identical
entries. In particular, for the combinatorial variable selection problem in this paper, there exist
complicated dependence structures between the maximum statistic for different nodes, since each
time when the degree of one single node is tested, the statistic is computed based on the whole
graph. Again, this highlights the challenge of the multiple testing problem in our paper. To es-
tablish FDR control, we need to deal with the dependence between the maximum statistic of pairs
of non-hub nodes. By the definition of non-hub nodes, the covariance matrix difference between
each pair of the involving Gaussian vectors actually has lots of zero entries. We would like to take
advantage of this sparsity pattern when applying the comparison bound. However, the bound in
(3.1) is not sharp when ∆∞ is not negligible but ∆0 is small. To this end, we develop a different
version of the Cramér-type comparison bound as below.

Theorem 3.2 (CCB with elementwise `0-norm difference). Assume the Gaussian random vectors
U and V have unit variances, i.e., σUjj = σVjj = 1, j ∈ [d] and there exists some σ0 < 1 such that
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|σVjk| ≤ σ0, |σUjk| ≤ σ0 for any j 6= k. Suppose there exists a disjoint p-partition of nodes ∪p`=1C` = [d]

such that σUjk = σVjk = 0 when j ∈ C` and k ∈ C`′ for some ` 6= `′. We have

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ O(∆0 log d

p

)
, (3.2)

for some constant C0 > 0.

When applying the above result to our multiple degree testing problem, specifically the covari-
ance of maximum test statistics for pairs of non-hub nodes, ∆0 can be controlled as k2

τ which is in
a constant order. In Theorem 3.2, the quantity p represents the number of connected subgraphs
shared by the coviarance matrix networks of U and V . We refer to Theorem B.4 in the appendix
for a generalized definition of p to strengthen the results in (3.2). The p in the denominator of
the right hand side of Cramér-type comparison bound in (3.2) is necessary: it is possible that even
if ∆0 is small, when p is large, the Camér-type Gaussian comparison bound is not converging to
zero. For example, consider Gaussian vectors with unit variances U = (X1, X2, Z, . . . , Z) ∈ Rd,
V = (Y1, Y2, Z, . . . , Z) ∈ Rd, where corr(X1, X2) = 0.9, corr(Y1, Y2) = 0 and (X1, X2) ⊥⊥ Z,
(Y1, Y2) ⊥⊥ Z. For this case, the Camér-type Gaussian comparison bound

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = sup
0≤t≤C0

√
log d

∣∣∣∣P(max{|X1|, |X2|, |Z|} > t)

P(max{|Y1|, |Y2|, |Z|} > t)
− 1

∣∣∣∣
is not converging to zero as d goes to infinity even if the corresponding ∆0 is 1 but p = 2.

Compared with Theorem 3.1, the above theorem provides a sharper comparison bound for large
p and small ∆0. The two theorems together describe a interesting phase transition phenomenon, i.e.,
the dependence on ΣU −ΣV of the Cramér-type comparison bound exhibits a difference behavior
in the regime of large p and small ∆0 versus the regime of small ∆∞.

The proof of Theorem 3.2 can be found in Appendix B.2. Our main technical innovation is
to establish a new type of anti-concentration bound for “derivatives” of Gaussian maxima. Since
both the indicator function and maximum function are discontinuous, we follows the idea of using
smoothing approximation as in the proof of Theorem 3.1, specifically, we bound the following term

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)], (3.3)

where ϕ is the same approximation function of the indicator of `∞ norm with certain smoothing
parameter β. Note that E[1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] is the anti-concentration bound for Gaus-
sian maxima (Chernozhukov et al., 2014). A non-uniform version is also established in Kuchibhotla
et al. (2021). (3.3) can be viewed as the anti-concentration bound on the second order partial
derivatives of the smooth approximation function. When deriving the comparison bound in terms
of `0 norm difference, we have to deal with such terms as (3.3) when σUjk 6= σVjk. We show (3.3) can
be controlled as

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] .
P (||V ||∞ > t) (log d)2

εβp
.

The above anti-concentration bound is non-uniform and has only a logarithm dependence on the
dimension d. It provides a relatively sharp characterization when t is large and the Gaussian
graphical model is not highly connected (i.e., the number of connected components p being large).
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4 Discovering hub responses in multitask regression

The theoretical results presented in Section 3 will be the cornerstone for establishing FDR control
of the multiple testing problem described in Section 2. As seen previously, the testing problem (2.1)
is set up in a quite general way: Θ is a weight matrix, and we would like to select rows whose `0
norm exceeds some threshold. This section considers the specific application to multitask/multiple
response regression, which turns out to be less involved. We take advantage of it and demonstrate
how to utilize the probabilistic tools in Section 3. After that, the theoretical results on FDR control
for the Gaussian graphical models are presented and discussed in Section 5.

In multitask regression problem, multiple response variables are regressed on a common set of
predictors. We can view this example as a bipartite graph G = (V1,V2, E), |V1| = d1, |V2| = d2,
where V1 contains the response variables and V2 represents the common set of predictors. Each
entry of the weight matrix Θ indicates whether a given predictor is non-null or not for a given
response variable. In the case of parametric model, Θ ∈ Rd1×d2 corresponds to the parameter
matrix. One might be interested in identifying shared sparsity patterns across different response
variables. It can be solved by selecting a set of predictors being non-null for all response variables
(Obozinski et al., 2006; Dai and Barber, 2016). This section problem is column-wise in the sense
that we want to select columns of Θ, denoted by Θ·j , such that ||Θ·j ||0 = d1. It is also interesting
to consider a row-wise selection problem formalized in (2.1). Under the multitask regression setup,
we would like to select response variables with at least a certain amount of non-null predictors. We
will call this type of response variables hub responses throughout the section. This has practical
applications in real-world problems such as the gene-disease network.

Consider the multitask regression problem with linear models, we have n i.i.d. pairs of the
response vector and the predictor vector, denoted by (Y1,X1), (Y2,X2), . . . , (Yn,Xn), where Yi ∈
Rd1 ,Xi ∈ Rd2 satisfy the following relationship,

Yi = ΘXi + Ei, where Ei ∼ N (0,Dd1×d1) and Xi ⊥⊥ Ei, (4.1)

where Θ ∈ Rd1×d2 is the parameter matrix and D is a d1 by d1 diagonal matrix whose diagonal
elements σ2

j is the noise variance for response variable Y (j). Let X be the design matrix with rows

X>1 , . . . ,X
>
n , shared by different response variables, and assume the noise variables are independent

conditional on the design matrix X. Let s = maxj∈[d1] ||Θj ||0 be the sparsity level of the parameter
matrix Θ, we want to select columns of the parameter matrix which has at least kτ nonzero entries,
i.e., select nodes with large degree among [d1] in the bipartite graph G = (V1,V2, E).

As mentioned in Section 2, some estimator of the parameter matrix is needed to conduct
hypothesis testing. Debiased Lasso is widely used for parameter estimation and statistical inference
in high dimensional linear models (Javanmard and Montanari, 2014a,b). For each response variable
Y (j), j ∈ [d1], we compute the debiased Lasso estimator, denoted by Θ̃d

j as

Θ̃d
j = Θ̂j +

1

n
MX>(Y (j) −XΘ̂j), where Θ̂j = arg min

β∈Rd2

{ 1

2n
‖Y (j) −Xβ‖22 + λ‖β‖1

}
. (4.2)

Note the above M is defined as M = (m1, . . . ,md2)> where

mi = argmin
m

m>Σ̂m, s.t. ‖Σ̂m− ei‖∞ ≤ µ , (4.3)

and here Σ̂ = (X>X)/n.
Then the debiased estimator of the parameter matrix, defined by Θ̃d := (Θ̃d

1 , · · · , Θ̃d
d1

)>, will

be used the input {Θ̃e}e∈V1×V2 of Algorithm 2. In addition, we also need to compute the quantile
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of the maximum statistics. There exist many work studying the asymptotic distribution of the
debiased Lasso estimator. Among them, the results in Javanmard and Montanari (2014a) (when
translated into our multitask regression setup) imply, for each response variable Y (j), j ∈ [d1],

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0, σ2
jMΣ̂M>), (4.4)

under proper assumptions. Additionally with a natural probabilistic model of the design matrix,
the bias term can be showed to be ||Ξ||∞ = O( s log d2√

n
) with high probability. As discussed in

(Javanmard and Montanari, 2014a), the asymptotic normality result can be used for deriving
confidence intervals and statistical hypothesis tests. As the noise variance σj is unknown, the
scaled Lasso is used for its estimation (Javanmard and Montanari, 2014a; Sun and Zhang, 2012),
given by the following joint optimization problem,

{Θ̂j , σ̂j} = arg min
β∈Rd2 ,σ>0

{ 1

2σn
‖Y (j) −Xβ‖22 +

σ

2
+ λ‖β‖1

}
. (4.5)

Regarding our testing problem, intuitively we can use the quantile of the Gaussian maxima of
N (0, σ̂2

jMΣ̂M>) to approximate the quantile of maximum statistic TE = max
(j,k)∈E

√
n|Θ̃d

jk| for some

given subset E. Specifically, let Zj | X,Y (j) ∼ N (0, σ̂2
jMΣ̂M>) where Zj ∈ Rd2 and consider the

subset E ⊂ {j} × V2, we approximate the quantile of TE by the following

TNE := max
(j,k)∈E

|Zjk|, ĉ(α,E) = inf
{
t ∈ R : PZ

(
TNE ≤ t

)
≥ 1− α

}
. (4.6)

Indeed, under proper scaling conditions, similar results as (2.5) can be established, i.e., as n, d→∞,

sup
α∈(0,1)

∣∣∣∣P( max
(j,k)∈E

√
n|Θ̃d

jk −Θjk| > ĉ(α,E)

)
− α

∣∣∣∣→ 0. (4.7)

The above result is based on two ingredients: the asymptotic normality result and the control of
the bias term Ξ. Below we list the required assumptions for those two ingredients, i.e., (4.4) and
||Ξ||∞ = O( s log d2√

n
).

Assumption 4.1 (Debiased Lasso with random designs). The following assumptions are from the
ones of Theorems 7 and 8 in Javanmard and Montanari (2014a).

• Let Σ = E
[
X1X

>
1

]
∈ Rd2×d2 be such that σmin(Σ) ≥ Cmin > 0, and σmax(Σ) ≤ Cmax <∞,

and maxj∈[d2] Σjj ≤ 1. Assume XΣ−1/2 have independent subgaussian rows, with zero mean

and subgaussian norm ‖Σ−1/2Xi‖ψ2 = κ, for some constant κ ∈ (0,∞).

• µ = a
√

(log d2)/n, and n ≥ max(ν0s log(d2/s), ν1 log d2), ν1 = max(1600κ4, a/4), and λ =

σ
√

(c2 log d2)/n.

Remark that there may exist other ways of obtaining a consistent estimator of Θ and sufficiently
accurate quantile estimates under different assumptions. Since it is not the main focus of this
paper, we will not elaborate on it. As mentioned before, the Kolmogorov type result in (4.7) can
be immediately applied to the global testing problem to guarantee FWER control. However, it
is not sufficient for FDR control of the multiple testing problem in this paper. And this is when
the Cramér-type comparison bound for Gaussian maxima established in Section 3 play its role.
In addition, signal strength condition is needed. Recall that H0 = {j ∈ [d1] : ||Θj ||0 < kτ} with
d0 = |H0|, we consider the following rows of Θ,

B := {j ∈ Hc0 : ∀k ∈ supp(Θj), |Θjk| > c
√

log d2/n}, (4.8)
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and define the proportion of such rows as ρ = |B|/d1. In the context of multitask regression, ρ
measures the proportion of hub response variables whose non-null parameter coefficients all exceed
certain thresholds, thus characterizes the overall signal strength. Below we present our result on
FDP/FDR control under appropriate assumptions.

Theorem 4.2 (FDP/FDR control). Under Assumption 4.1 and the scaling condition d2 log d2+d0
d0d2ρ

+
s log2 d2
n1/2 + log2 d2

(nρ)1/5
= o(1), if we implement the StarTrek procedure in Algorithm 2 with Θ estimated

by (4.2) and the quantiles approximated by (4.6), as (n, d1, d2)→∞, we have

FDP ≤ q d0

d1
+ oP(1) and lim

(n,d1,d2)→∞
FDR ≤ q d0

d1
. (4.9)

The proof of Theorem 4.2 can be found in Appendix A.3. Note that signal strength conditions
which require some entries of parameter matrix Θ have magnitudes exceeding c

√
log d2/n are

usually assumed in existing work studying FDR control problem for high dimensional models (Liu,
2013; Liu and Shao, 2014; Liu and Luo, 2014; Xia et al., 2015, 2018; Javanmard and Javadi, 2019).

5 Discovering hub nodes in Gaussian graphical models

This section focuses on the hub node selection problem on Gaussian graphical models. Recall in
Section 2, we first compute the one-step estimator {Θ̂d

e}e∈V×V in (2.3) then take its standardized
version {Θ̃d

e}e∈V×V as the input of Algorithm 2 i.e.,

Θ̂d
jk := Θ̂jk −

Θ̂>j

(
Σ̂Θ̂k − ek

)
Θ̂>j Σ̂j

, Θ̃d
jk := Θ̂d

jk/
√

Θ̂d
jjΘ̂

d
kk. (5.1)

Our StarTrek filter selects nodes with large degrees based on the maximum statistics TE =
max

(j,k)∈E

√
n|Θ̃d

jk| over certain subset E. We use the Gaussian multiplier bootstrap (2.4) to ap-

proximate the quantiles, specifically,

ĉ(α,E) = inf
{
t ∈ R : Pξ

(
TBE ≤ t

)
≥ 1− α

}
. (5.2)

Chernozhukov et al. (2013) shows that this quantile approximation is accurate enough for FWER
control in modern high dimensional simultaneous testing problems. Their results are based on the
control of the non-asymptotic bounds in a Kolmogorov distance sense. Lu et al. (2017) also takes
advantage of this result to test single hypothesis of graph properties or derive confidence bounds
on graph invariants.

However, in order to conduct combinatorial variable selection with FDR control guarantees, we
need more refined studies about the accuracy of the quantile approximation. This is due to the
ratio nature of the definition of FDR, as explained in Section 2.2. Compared with the results in
Chernozhukov et al. (2013), we provide a Cramér-type control on the approximation errors of the
Gaussian multiplier bootstrap procedure. This is built on the probabilistic tools in Section 3, in
particular, the Cramér-type Gaussian comparison bound with max norm difference in Theorem 3.1.
Due to the dependence structure behind the hub selection problem in Graphical models, we also
have to utilize Theorem 3.2. In a bit more detail, computing the maximum test statistic for testing
node node actually involves the whole graph, resulting complicated dependence among the test
statistics. The non-differentiability of the maximum function makes it very difficult to track this
dependence. Also note that, this type of difficulty can not be easily circumvented by alternative
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methods, due to the discrete nature of the combinatorial inference problem. However, we figure
out that the Cramér-type Gaussian comparison bound with `0 norm difference plays an important
role in handling this challenge.

In general, the sparsity/density of the graph is closed related to the dependence level of multiple
testing problem on graphical models. For example, Liu (2013); Xia et al. (2015, 2018) make certain
assumptions on the sparsity level and control the dependence of test statistics when testing multiple
hypotheses on graphical models/networks. For the hub node selection problem in this paper, a
new quantity is introduced, and we will explain why it is suitable. Recall that we define the set
of non-hub response variables in Section 4. Similarly, the set of non-hub nodes is denoted by
H0 = {j ∈ [d] : ||Θj ||0 < kτ} with d0 = |H0|. Now we consider the following set,

S = {(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 6= j2, k1 6= k2,Θj1j2 = Θj1k1 = Θj2k2 = 0,Θj1k2 6= 0,Θj2k1 6= 0}.
(5.3)

Remark that in the above definition, k1 can be the same as j2 and k2 can be the same as j1. If

(a)

(d)(c)

(b)

Figure 1: Left panel: a graphical demonstration of the definition of S via four examples of a 4-
vertex graph; Right panel: four different graph patterns with 6 vertices. Calculating |S| yields
10, 15, 24, 51 for (a),(b),(c),(d) respectively.

there exists a large number of nodes which are neither connected to j1 nor j2, we then do not need
to worry much about the dependence between the test statistics for non-hub nodes. Therefore, |S|
actually measures the dependence level via checking how a pair of non-hub nodes interact through
other nodes. Liu (2013); Cai et al. (2013) also examine the connection structures in the 4-vertex
graph and control the dependence level by carefully bounding the number of the 4-vertex graphs
with different numbers of edges.

We provide a graphical demonstration of S and show how |S| looks like in certain types of graph
patterns via some simple examples. Though the definition of S does not exclude the possibility
of (j1, j2, k1, k2) being a graph with 2 or 3 vertices, we only draw 4-vertex graph in Figure 1 for
convenience. In the left panel of Figure 1, we consider four different cases of the 4-vertex graph.
The upper two belong to the set S, while the lower three do not. In the right panel, we consider
four graphs which all have 6 vertices. They have different graph patterns. For example, (a) clearly
has a hub structure. All of the non-hub nodes are only connected to the hub node. While in (d),
the edges are evenly distributed and each node are connected to its two nearest neighbours. For
each graph, we count the value of |S| and obtain 10, 15, 24, 51 respectively, which show a increasing
trend of |S|. This sort of matches our intuition that it is relatively easier to discover hub nodes on
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graph (a) compared with graph (d). See more evidence in the empirical results of Section 6.
In addition to |S|, we also characterize the dependence level via the connectivity of the graph,

specifically let p be the number of connected components. And similarly as in Section 4, we define
ρ to measure the signal strength, i.e., ρ = |B|/d, where B := {j ∈ Hc0 : ∀k ∈ supp(Θj), |Θjk| >
c
√

log d/n}. In the following, we list our assumptions needed for FDR control.

Assumption 5.1. Suppose that Θ ∈ U(M, s, r0) and the following conditions hold:

(i) Signal strength and scaling condition.

log d

ρ

(
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+
s(log d)3

n1/2

)
= o(1). (5.4)

(ii) Dependency and connectivity condition.

log d

ρd0
+

(log d)2|S|
ρd2

0p
= o(1). (5.5)

In the above assumption, (5.4) places conditions on the signal strength and scaling. The first and
the second term come from the Cramér-type large deviation bounds in the high dimensional CLT
setting (Kuchibhotla et al., 2021) and the Cramér-type Gaussian comparison bound established
in Theorem 3.1. And the third term comes from the fact that the relevant test statistics arise as
maxima of approximate averages instead of the exact averages and thus the approximation error
needs to be controlled. See similar discussions about this in (Chernozhukov et al., 2013). Remark
that the signal strength condition is mild here, due to similar reasons as the discussion in Section
4. Regarding (5.5), there is a trade-off between the dependence level and connectivity level of the
topological structure. |S|/d2

0 characterizes how the test statistics of non-hub nodes are correlated
to each other in average. p by definition describes the level of connectivity. Due to the condition
(5.5), larger signal strength generally makes the hub selection problem easier. And when |S|/d2

0

is small, the graph is allowed to be more connected. When there exist more sub-graphs, we allow
higher correlations between the non-hub nodes. Note that the cardinality of S is directly related
to the `0 norm covariance matrix difference term ∆0, and arises from the application of Theorem
3.2. In the following, we present our core theoretical result on FDP/FDR control for hub selection
using the StarTrek filter on Gaussian graphical models.

Theorem 5.2 (FDP/FDR control). Under Assumption 5.1, the StarTrek procedure in Algorithm
2 with (5.1) as input and the quantiles approximated by (5.2) satisfies: as (n, d)→∞,

FDP ≤ q d0

d
+ oP(1) and lim

(n,d)→∞
FDR ≤ q d0

d
. (5.6)

The proof can be found in Appendix A.1. Remark that control of the FDR does not prohibit
the FDP from varying. Therefore our result on FDP provides a stronger guarantee on controlling
the false discoveries. See clear empirical evidence in Section 6.1. To the best of our knowledge, the
proposed StarTrek filter in Section 2 and the above FDP/FDR control result are the first Algorithm
and theoretical guarantee for the problem of simultaneously selecting hub nodes. Existing work
like Liu (2013); Liu and Luo (2014); Xia et al. (2015, 2018); Javanmard and Javadi (2019) focus on
the discovery of continuous signals and their tools are not applicable to the problem here.
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6 Numerical results

6.1 Synthetic data

In this section, we apply the StarTrek filter to synthetic data and demonstrate the performance
of our method. The synthetic datasets are generated from Gaussian graphical models. The corre-
sponding precision matrices are specified based on four different types of graphs. Given the number
of nodes d and the number of connected components p, we will randomly assign those nodes into p
groups. Within each group (sub-graph), the way of assigning edges for different graph types will be
explained below in detail. After determinning the adjacency matrix of the graph, we follow Zhao
et al. (2012) to construct the precision matrix, more specifically, we set the off-diagonal elements to
be of value v which control the magnitude of partial correlations and is closely related to the signal
strength. In order to ensure positive-definiteness, we add some value v together with the absolute
value of the minimal eigenvalues to the diagonal terms. In the following simulations, v and u are
set to be 0.4 and 0.1 respectively. Now we explain how to determine the edges within each group
(sub-graph) for four different graph patterns.

• Hub graph. We randomly pick one node as the hub node of the sub-graph, then the rest
of the nodes are made to connect with this hub node. There is no edge between the non-hub
nodes.

• Random graph. This is the Erdös-Rényi random graph. There is an edge between each
pair of nodes with certain probability independently. In the following simulations, we will set
this probability to be 0.15 unless stated otherwise.

• Scale-free graph. In this type of graphs, the degree distribution follows a power law.
We construct it by the Barabási-Albert algorithm: starting with two connected nodes, then
adding each new node to be connected with only one node in the existing graph; and the
probability is proportional to the degree of the each node in the existing graph. The number
of the edges will be the same as the number of nodes.

• K-nearest-neighbor (knn) graph. For a given number of k, we add edges such that each
node is connected to another k nodes. In our simulations, k is sampled from {1, 2, 3, 4} with
probability mass {0.4, 0.3, 0.2, 0.1}.

See a visual demonstration of the above four different graph patterns in Appendix E.1. Throughout
the simulated examples, we fix the number of nodes d to be 300 and vary other quantities such
as sample size n or the number of connected components p. To estimate the precision matrix, we
run the graphical Lasso algorithm with 5-fold cross-validation. Then we obtain the standardized
debiased estimator as described in (2.3). To obtain the quantile estimates, we use the Gaussian
multiplier bootstrap with 4000 bootstrap samples. The threshold kτ for determining hub nodes is
set to be 3. And all results (of FDR and power) are averaged over 64 independent replicates.

As we can see from Table 1, the FDRs of StarTrek filter for different types of graph are well
controlled below the nominal levels. In hub graph, the FDRs are relatively small but the power is
still pretty good. Similar phenomenon for multiple edge testing problem is observed (Liu, 2013).
In the context of node testing, it is also unsurprising. These empirical results actually match our
demonstration about |S| in Figure 1: hub graphs have a relatively weaker dependence structure
(smaller S values) and make it is easier to discover true hub nodes without making many errors.

The power performance of the StarTrek filter is showed in Table 2. As the sample size grows,
we see the power is increasing for all four different types of graphs. When p is larger, there are more
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Table 1: Empirical FDR

d = 300 q = 0.1 q = 0.2

n 200 300 400 200 300 400

p = 20

hub 0.0000 0.0000 0.0007 0.0000 0.0000 0.0029
random 0.0255 0.0383 0.0467 0.0521 0.0770 0.0833

scale-free 0.0093 0.0211 0.0282 0.0352 0.0486 0.0581
knn 0.0101 0.0296 0.0370 0.0228 0.0620 0.0769

p = 30

hub 0.0013 0.0000 0.0016 0.0027 0.0054 0.0036
random 0.0347 0.0359 0.0568 0.0725 0.0753 0.0963

scale-free 0.0215 0.0335 0.0317 0.0521 0.0624 0.0584
knn 0.0297 0.0420 0.0563 0.0504 0.0857 0.1030

hub nodes in general due to the way of constructing the graphs, and we find the power is higher.
Among different types of graphs, the power in hub graph and scale-free graph is higher than that
in random and knn graph since the latter two are relatively denser and have more complicated
topological structures.

Table 2: Power

d = 300 q = 0.1 q = 0.2

n 200 300 400 200 300 400

p = 20

hub 0.7109 0.9453 0.9898 0.7805 0.9648 0.9938
random 0.3343 0.7815 0.9408 0.4520 0.8514 0.9604

scale-free 0.4524 0.8145 0.9363 0.5281 0.8614 0.9568
knn 0.0905 0.5306 0.8067 0.1634 0.6511 0.8630

p = 30

hub 0.6848 0.9244 0.9706 0.7588 0.9459 0.9784
random 0.4882 0.8863 0.9790 0.5770 0.9225 0.9870

scale-free 0.6472 0.9047 0.9810 0.7197 0.9331 0.9870
knn 0.2409 0.6841 0.8922 0.3298 0.7706 0.9241

In Figure 2 and 3, we demonstrate the performance of our method in the random graph with
different parameters. Specifically, we vary the connecting probability changing from 0.1 to 0.3 in
the x-axis. In those plots, we see the FDRs are all well controlled below the nominal level q = 0.1.
As the connecting probability of the random graph grows, the graph gets denser, resulting more hub
nodes. Thus we can see the height of the short blue solids lines (representing qd0/d) is decreasing.
Based on our results in Theorem 5.2, the target level of FDP/FDR control is qd0/d. This is why
we find the mean and median of each box-plot is getting smaller as the connecting probability
increases (hence d0 decreases).

The box-plots and the jittering points show that our StarTrek procedure not only controls the
FDR but also prohibit it from varying too much, as implied by the theoretical results on FDP
control in Section 5. Regarding the power plots, we see that the power is smaller when the graph is
denser since the hub selection problem becomes more difficult with more disturbing factors. Plots
with nominal FDR level q = 0.2 are deferred to Appendix E.3.
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Figure 2: FDP and power plots for the StarTrek filter in the random graph. The connecting
probability is varied on the x-axis. The number of samples n is chosen to be 300 and the number
of connected components p equals 20. The nominal FDR level is set to be q = 0.1; the short blue
solid lines correspond to qd0/d, calculated by averaging over the 64 replicates. For both panels, the
box plots are plotted with the black points representing the outliers. Colored points are jittered
around, demonstrating how the FDP and power distribute.

6.2 Application to gene expression data

We also apply our method to the Genotype-Tissue Expression (GTEx) data studied in Lonsdale
et al. (2013). Beginning with a 2.5-year pilot phase, the GTEx project establishes a great database
and associated tissue bank for studying the relationship between certain genetic variations and
gene expressions in human tissues. The original dataset involves 54 non-diseased tissue sites across
549 research subjects. Here we only focus on analyzing the breast mammary tissues. It is of great
interest to identify hub genes over the gene expression network.
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Figure 3: FDP and power plots for the StarTrek filter in the random graph. The other setups are
the same as Figure 3 except for p = 30.

First we calculate the variances of the gene expression data and focus on the top 100 genes in
the following analysis. The data involves n = 291 samples for male individuals and n = 168 samples
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Figure 4: The above graphs are based the estimated precision matrices (the left two plots). The
adjacency matrices of the other six plots are based on the standardized estimated precision matrices
but thresholded at 0.025, 0.05, 0.075 respectively. Blue vertices represent the selected hub genes.

for female individuals. The original count data is log-transformed and scaled. We then obtain the
estimator of the precision matrix by the Graphical Lasso with 2-fold cross-validation. As for the
hub node criterion, we set kτ as the 50% quantile of the node degrees in the estimated precision
matrix. We run StarTrek filter with 2000 bootstrap samples and nominal FDR level q = 0.1 to
select hub genes for both the male and female datasets.
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Figure 5: Plots of the sorted p-values (αj , j ∈ [d]) in Algorithm 2. Those blue points correspond
to selected hub genes. The blue line is the rejection line of the BHq procedure. The coordinates
of the plots are flipped. We abbreviate the names of the 100 genes and only show selected ones
with blue colored text. The upper panel and the lower panel are based on male and female data
respectively.
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Figure 4 shows that the selected hub genes by the StarTrek filter also have large degrees on the
estimated gene networks (based on the estimated precision matrices). In Figure 5, the results for
male and female dataset agree with each other except that the number of selected hub genes using
female dataset is smaller due to a much smaller sample size. The selected hub genes are found to
play an important role in breast-related molecular processes, either as central regulators or their
abnormal expressions are considered as the causes of breast cancer initiation and progression, see
relevant literature in genetic research such as Hellwig et al. (2016); Blein et al. (2015); Chen et al.
(2016); Li et al. (2019); Lou et al. (2020); Mohamed et al. (2014); Bai et al. (2019); Sirois et al.
(2019); Marino et al. (2020); Malvia et al. (2019). Therefore, our proposed method for selecting hub
nodes can be applied to the hub gene identification problem. It may improve our understanding of
the mechanisms of breast cancer and provide valuable prognosis and treatment signature.
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Supplementary material to

StarTrek: Combinatorial Variable Selection with False Discovery Rate Control

This document contains the supplementary material to the paper “StarTrek: Combinatorial
Variable Selection with False Discovery Rate Control”. Appendix A presents the proofs of the FDR
control results. In Appendix B, we provide the proofs of two types of Cramér-type comparison
bounds for Gaussian maxima. Appendix C proves the Cramér-type deviation bounds for the
Gaussian multiplier bootstrap. In Appendix D, we establish the validity and a power result of our
test on the degree of a single node. Appendix E contains some plots and tables deferred from the
main paper.

A Proofs for FDR control

In this section, we aim to prove Theorem 5.2. In order to prove the theorem, we need Lemma
A.1 which is about the test of single node degree. Remark that this lemma proves the asymptotic
validity of the test in Algorithm 1 and provides a power analysis. The signal strength condition is
only required for the power analysis part. To see why Lemma A.1 is useful for establishing FDR
control for our StarTrek procedure in Algorithm 2, we notice the following equivalence:

{ψj,α = 1} = {αj ≤ α}, (A.1)

where α is a given type-I error level, ψj,α is the test described in Algorithm 1, and αj is defined in
Algorithm 2. First, we show {αj ≤ α} ⊂ {ψj,α = 1}. Note

{αj ≤ α} =
⋂

1≤s≤kτ

{ĉ−1(
√
n|Θ̃j,(s)|, E

(s)
j ) ≤ α}

=
⋂

1≤s≤kτ

{
√
n|Θ̃j,(s)| ≥ ĉ(α,E

(s)
j )}, (A.2)

where E
(s)
j := {(j, `) : ` 6= j, |Θ̃j`| ≤ |Θ̃j,(s)|}. The first equality is due to the definition of αj

and the second equality holds by the definition of ĉ−1. Examining (A.2), we immediately know
√
n|Θ̃j,(1)| ≥ ĉ(α,E

(1)
j ) (here E

(1)
j = E0 = {(k, j) : k ∈ [d], k 6= j}), thus the edge corresponding

to Θ̃j,(1) will be rejected in the first iteration of Algorithm 1. Regarding the edge corresponding

to Θ̃j,(2), if
√
n|Θ̃j,(2)| ≥ ĉ(α,E

(1)
j ), then it will be rejected in the first iteration, too. Otherwise,

Algorithm 1 enters the second iteration. Since (A.2) implies
√
n|Θ̃j,(2)| ≥ ĉ(α,E

(2)
j ), we know the

edge corresponding to Θ̃j,(2) must be rejected in the second iteration of Algorithm 1. Following
this kind of argument, we are able to show that (A.2) implies that all those edges corresponding
to {Θ̃j,(s), 1 ≤ s ≤ kτ} will be rejected according to Algorithm 1. Since the number of rejected
edges is at least kτ , we have ψj,α = 1. Second, we show {ψj,α = 1} ⊂ {αj ≤ α}. If ψj,α = 1}, we

know the edges corresponding to {Θ̃j,(s), 1 ≤ s ≤ kτ} will be rejected, which immediately imply
√
n|Θ̃j,(1)| ≥ ĉ(α,E

(1)
j ). Regarding the edge corresponding to Θ̃j,(2), it must get rejected in the

first two iterations of Algorithm 1. In either cases, we always have
√
n|Θ̃j,(2)| ≥ ĉ(α,E

(2)
j ) due to

E
(2)
j ⊂ E

(1)
j and the fact that ĉ(α,E) ≤ ĉ(α,E′) when E ⊂ E′. Finally, we establish (A.1).

Lemma A.1. Under the same conditions as Lemma 2.1, given some 1 ≤ j ≤ d, we have the
following results.

26



(i) Under the alternative hypothesis H1j : ‖Θj,−j‖0 ≥ kτ , we have for any α ∈ (0, 1),

lim
(n,d)→∞

P(ψj,α = 1) = 1.

(ii) Additionally, suppose for any |Θjk| > 0, we also have |Θjk| ≥ c
√

log d/n for some constant
c > 0. Under the null hypothesis H0j : ‖Θj,−j‖0 < kτ , we then have for any u ∈ (0, 1),

lim
(n,d)→∞

P (ψj,α = 1) ≤ α.

The proof of the above lemma is deferred to Section D.1. The maximum statistic used in our
testing procedure takes the form of TE = max(j,k)∈E

√
n|Θ̃d

jk|. In our key proof procedure, we deal
with the case where E = {(j, k) : Θjk = 0}. Since some of the results hold for general E, we will
work with the general notations. Specifically, through out Appendices A.1 and A.2, we introduce
the following notations: in order to approximate

TE := max
(j,k)∈E

√
n

∣∣∣∣(Θ̂d
jk/
√

Θ̂d
jjΘ̂

d
kk −Θjk/

√
ΘjjΘjk)

∣∣∣∣ (A.3)

by the multiplier bootstrap process

TBE := max
(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣ n∑
i=1

Θ̂>j (XiX
>
i Θ̂k − ek)ξi

∣∣∣∣, (A.4)

we define two intermediate processes:

T̆E := max
(j,k)∈E

∣∣∣∣ 1√
n ΘjjΘkk

n∑
i=1

Θ>j (XiX
>
i Θk − ek)

∣∣∣∣, (A.5)

T̆BE := max
(j,k)∈E

∣∣∣∣ 1√
n ΘjjΘkk

n∑
i=1

Θ>j (XiX
>
i Θk − ek)ξi

∣∣∣∣. (A.6)

A.1 Proof of Theorem 5.2

Proof of Theorem 5.2. Given some j ∈ H0, denote N0j = {(j, k) : Θjk = 0}. By the first part of
Lemma A.1, we have ∑

j∈B ψj,α

|B|
→ 1 in probability, (A.7)

when α = Ω(1/d), where B := {j ∈ Hc0 : ∀k ∈ supp(Θj), |Θjk| > c
√

log d/n}. Note that we have

P
(
q|B|
d
≤ α̂ ≤ 1

)
≥ P

(
q|B|/d · d∑
j∈[d] ψj,q|B|/d

≤ q

)
= P

(
|B|∑

j∈[d] ψj,q|B|/d
≤ 1

)
→ 1 (A.8)

in probability, where the first inequality is by (2.2) and the last convergence in probability is due

to q |B|d = Ω(1/d) and (A.7). Rewrite the FDP (with α̂) as

FDP(α̂) :=

∑
j∈H0

ψj,α̂

max
{

1,
∑

j∈[d] ψj,α̂

} =
α̂d

max
{

1,
∑

j∈[d] ψj,α̂

} · ∑j∈H0
ψj,α̂

d0α̂
· d0

d
,
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and notice that
α̂d

max
{

1,
∑

j∈[d] ψj,α̂

} · d0

d
≤ qd0

d
≤ q.

Then it suffices to control the FDP(α̂) by dealing with
(∑

j∈H0
ψj,α̂

)
/d0α̂. By (A.8), the FDP

control problem is now reduced to showing

sup
α∈[αL,1]

∑
j∈H0

ψj,α

d0α
≤ 1 + oP(1),

where αL = q|B|/d, By (D.3) in the proof of the second part of Lemma A.1, ψj,α = 1 implies

that maxe∈N0j

√
n|Θ̃d

e − Θ?
e| ≥ ĉ(α,N0j), where N0j = {(j, k) : Θjk = 0} = {(j, k) : Θ?

jk = 0}.
Therefore, we have∑

j∈H0
ψj,α

d0α
≤
∑

j∈H0
1(maxe∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j))

d0α
.

Hence it suffices to prove that

sup
α∈[αL,1]

∣∣∣∣∣
∑

j∈H0
1(maxe∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j))

d0α
− 1

∣∣∣∣∣→ 0 in probability. (A.9)

In order to prove (A.9), we construct a discrete grid of the interval [αL, 1]. The number of grid points
is denoted by λd and will be decided later. First, we let t1 := ĉ(1, N0j) = 0, tλd := ĉ(αL, N0j). Here

ĉ(αL, N0j) = inf
{
t ∈ R : Pξ

(
TBN0j

≤ t
)
≥ 1− α

}
is the quantile based on the Gaussian multiplier

bootstrap process and depends on the data X. Note that the involving random vectors in the
Gaussian multiplier bootstrap process are Gaussian conditioning on the data X and have bounded
variances with probability growing to 1. Since αL = Ω(1/d), then by the maximal inequalities for
sub-Gaussian random variables (Lemma 5.2 in van Handel (2014)), we have tλd = O(

√
log d) with

probability growing to 1. Second, note there exists hd such that hdtλd = o(1) and tλd/hd = O(log d).

Based on such hd, we construct equally spaced sequences {tm}λdm=1 over the range [t1, tλd ] = [0, tλd ]
with tm − tm−1 = hd. Then by setting αm such that tm = ĉ(αm, N0j), we obtain a discrete grid

{αm}λdm=1 of the interval [αL, 1]. For such αm, 1 ≤ m ≤ λd, we have

max
1≤m≤λd

∣∣∣∣αm−1

αm
− 1

∣∣∣∣ = max
1≤m≤λd

∣∣∣∣∣∣
P
(
TBN0j

> tm−1

)
P
(
TBN0j

> tm

) − 1

∣∣∣∣∣∣
≤ max

1≤m≤λd
C ′′(tm − tm−1)(tm + 1) exp(C ′(tm − tm−1)(tm + 1)) = o(1) (A.10)

with probability growing to 1, where the first equality holds by the definition of αm, the first
inequality holds due to part 2 and 3 of Theorem 2.1 in Kuchibhotla et al. (2021) (by first choosing
r − ε, r + ε in part 3 to be tm−1, tm respectively then letting r − ε, r in part 2 to be tm−1, tm
respectively). And the right hand side of the inequality is o(1) since (tm − tm−1)tm ≤ hdtλd = o(1)
with probability growing to 1.

Denote Ij(α) = 1(maxe∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j)). Then given αm ≤ α ≤ αm−1, for

m = 1, · · · , λd, we have∑
j∈H0

Ij(αm)

d0αm
· αm
αm−1

≤
∑

j∈H0
Ij(α)

d0α
≤
∑

j∈H0
Ij(αm−1)

d0αm−1
· αm−1

αm
. (A.11)
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Hence by (A.10) and (A.11), showing (A.9) is reduced to proving

max
1≤m≤λd

∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣→ 0, in probability. (A.12)

Then it suffices to show that, for any ε > 0,

P
(

max
1≤m≤λd

∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε)→ 0.

By the union bound argument and Chebyshev’s inequality, we have

P
(

max
1≤m≤λd

∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε)
≤

λd∑
m=1

P
(∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣ ≥ ε)

≤
λd∑
m=1

E
[∑

j∈H0
Ij(αm)− d0αm

]2

ε2d2
0α

2
m

(A.13)

=

λd∑
m=1

∑
j∈H0

Var (Ij(αm)− d0αm)

ε2d2
0α

2
m︸ ︷︷ ︸

III1

+

λd∑
m=1

(
E
[∑

j∈H0
Ij(αm)− d0αm

])2

ε2d2
0α

2
m︸ ︷︷ ︸

III2

+

λd∑
m=1

∑
j1,j2∈H0,j1 6=j2 Cov (Ij1(αm), Ij2(αm))

ε2d2
0α

2
m︸ ︷︷ ︸

III3

.

(A.14)

By Lemma A.2 and Lemma A.3, we have

III1 + III2 + III3 ≤ C ′tλd
ε2hd

(
d

d0|B|
+ η2(d, n)

)
+

C ′′′d

ε2|B|d0
· tλd
hd
·
(

1 + η(d, n)d0 +
|S| log d

d0p

)
≤ C1tλdη

2(d, n)

ε2hd
+

C2

ε2ρd0
· tλd
hd
·
(

1 + η(d, n)d0 +
|S| log d

d0p

)
, (A.15)

where we substitute ζ1 = s(log d)2/
√
n, ζ2 = 1/d2 and αL = q|B|/d = Ω(ρ) in η(d, n, ζ1, ζ2, αL) of

Lemma A.2 and note |B| > 0 then obtain the concise form η(d, n) below,

η(d, n) =
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+
s(log d)3

n1/2
+

1

d
.

Recall that tλd = q(αL;TBN0j
) = O

(√
log d

)
with probability growing to 1 and tλd/hd = O(log d).

Under Assumption 5.1, we have

log d

ρ

(
(log d)19/6

n1/6
+

(log d)11/6

ρ1/3n1/6
+
s(log d)3

n1/2

)
= o(1),

log d

ρd0
+

(log d)2|S|
ρd2

0p
= o(1),

and thus III1 + III2 + III3 = o(1) with probability growing to 1. Therefore, we have proved (A.9),
and finally establish the FDP control result below,

FDP(α̂) ≤ q d0

d
+ oP(1).
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In order to establish FDR control, it remains to check the uniformly integrability of the ran-
dom variable sequence in (A.12). Note for a sequence of random variable R1, R2, · · · , we have
supn E [|Rn|1(|Rn| > x)] ≤ x−1 supn E

[
R2
n

]
by Markov’s inequality. Then to show the uniform in-

tegrability of the random variable sequence {Rn}∞n=1, where Rn = max1≤m≤λd

∣∣∣∣∑j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣,
it suffices to show supn E

[
R2
n

]
<∞. Indeed, we have

sup
n

E

[(
max

1≤m≤λd

∣∣∣∣
∑

j∈H0
Ij(αm)

d0αm
− 1

∣∣∣∣)2
]

≤ sup
n

λd∑
m=1

E
[∑

j∈H0
Ij(αm)− d0αm

]2

d2
0α

2
m

= sup
n
ε2(III1 + III2 + III3).

Since III1 +III2 +III3 = o(1) with probability growing to 1, we immediately have supn E
[
R2
n

]
<∞,

thus finally establish the FDR control result:

lim
(n,d)→∞

FDR ≤ q d0

d
.

A.2 Ancillary lemmas for Theorem 5.2

Lemma A.2. Recalling the definitions of III1, III2 in (A.14), we have

III1 + III2 ≤
C ′tλd
ε2hd

(
1

ρd0
+ η2(d, n, ζ1, ζ2, αL)

)
,

where η(d, n, ζ1, ζ2, αL) = O
( (log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ζ1 log d+ ζ2
αL

)
with ζ1 = s(log d)2/

√
n, ζ2 = 1/d2.

Proof of Lemma A.2. First note the definitions of TE , T̆E , T
B
E and T̆BE in (A.3), (A.5), (A.4) and

(A.6) respectively, then we apply Proposition C.2 to T = TE , TY = T̆E , T
B = TBE , TW = T̆BE with

E = N0j . And we can find the terms ζ1, ζ2 in (C.4), (C.5) to be s(log d)2/
√
n, 1/d2 respectively, due

to(D.25) and (D.26) (i.e., the bound on the differences TE − T0, TBE − TB0 ) in the proof of Lemma
2.1. Thus we have∣∣∣∣∣P(maxe∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j))

α
− 1

∣∣∣∣∣ = η(d, n, ζ1, ζ2, αL), (A.16)

where Θ?
e = 0, e ∈ N0j and η(d, n, ζ1, ζ2, αL) = O

(
(log d)19/6

n1/6 + ζ1 log d+ ζ2
αL

)
with ζ1 = s(log d)2/

√
n,

ζ2 = 1/d2. Recalling the definition of III2 in (A.14), we have

III2 =

λd∑
m=1

(
E
[∑

j∈H0
Ij(αm)− d0αm

])2

ε2d2
0α

2
m

,
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where Ij(α) = 1(maxe∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j)). Note that αm ∈ [αL, 1], ∀ 1 ≤ m ≤ λd, then

we arrive at the following bound

III2 ≤
λd
ε2
· η2(d, n, ζ1, ζ2, αL) ≤ tλd

ε2hd
· η2(d, n, ζ1, ζ2, αL) (A.17)

up to some constant, where the first inequality holds by (A.16). As for the second inequality, we
recall the construction of {tm}λdm=1 (over the course of derivations from (A.9) to (A.10)) in the proof

of Theorem 5.2 thus note α1 = 1, t1 = 0 and tλd − t1 =
∑λd

m=2(tm− tm−1) = (λd− 1)hd. Regarding
the term III1, we have

III1 =

λd∑
m=1

∑
j∈H0

Var (Ij(αm)− d0αm)

ε2d2
0α

2
m

=

λd∑
m=1

∑
j∈H0

E(Ij(αm))(1− E(Ij(αm))

ε2d2
0α

2
m

≤ 1

ε2d0

λd∑
m=1

C

αm
≤ C

ε2d0αL
· tλd
hd
, (A.18)

where the first inequality holds due to (A.16) and the second inequality holds since αm ≥ αL
∀ 1 ≤ m ≤ λd and tλd = (λd − 1)hd. Therefore, combining (A.17) with (A.18), we obtain

III1 + III2 ≤
1

ε2
· tλd
hd

(
C

d0αL
+ η2(d, n, ζ1, ζ2, αL)

)
≤ C ′tλd

ε2hd

(
1

ρd0
+ η2(d, n, ζ1, ζ2, αL)

)
for some constant C ′, where the second inequality holds by the definition αL = q|B|/d in the proof
of Theorem 5.2 and the definition ρ = |B|/d in Section 5.

Lemma A.3. Recalling the definition of III3 in (A.14), we have

III3 ≤
C ′′′tλd
ρε2d0hd

(
1 + η(d, n, ζ1, ζ2, αL)d0 +

|S| log d

d0p

)
,

where η(d, n, ζ1, ζ2, αL) = O
( (log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ζ1 log d+ ζ2
αL

)
with ζ1 = s(log d)2/

√
n, ζ2 = 1/d2.

Proof of Lemma A.3. Note that III3 in (A.14) equals

III3 =

λd∑
m=1

∑
j1,j2∈H0,j1 6=j2 Cov (Ij1(αm), Ij2(αm))

ε2d2
0α

2
m

,

where Ij(α) = 1( max
e∈N0j

√
n|Θ̃d

e −Θ?
e| ≥ ĉ(α,N0j))

(A.19)

for j ∈ {j1, j2}. To quantify the covariance between Ij1(αm) and Ij2(αm) for j1, j2 ∈ H0, j1 6= j2,
we define

Wj(α) = 1( max
e∈N0j

|Ze| ≥ c(α,N0j)), (A.20)

where (Ze)e∈E (with E = N0j) is a Gaussian random vector and shares the same mean vector and
covariance matrix as the term ( 1√

n ΘjjΘkk

∑n
i=1 Θ>j (XiX

>
i Θk − ek))(j,k)∈E in T̆E . Here T̆E (with

E = N0j) has the explicit form below

T̆E = max
(j,k)∈E

1√
n ΘjjΘkk

∣∣∣∣ n∑
i=1

Θ>j (XiX
>
i Θk − ek)

∣∣∣∣.
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Remark here T̆E corresponds to the term TY in Proposition C.2 and maxe∈E |Ze| corresponds to
the term TZ in Proposition C.1. And c(α,N0j) is the corresponding Gaussian maxima quantile
q(α;TZ) (which does not need to be computed). Since P(TZ > q(α;TZ)) = α, we immediately have
have E[Wj(α)] = P

(
maxe∈N0j

√
n|Ze| ≥ c(α,N0j)

)
= α.

Now we replace Ij1(α), Ij2(α) in III3 by Wj1(α),Wj2(α) and define III′3 as

III′3 :=

λd∑
m=1

∑
j1,j2∈H0,j1 6=j2 Cov (Wj1(αm),Wj2(αm))

ε2d2
0α

2
m

. (A.21)

To bound the difference between III3 and III′3, we first note Cov(Ij1(α), Ij2(α)) = E[Ij1(α)Ij2(α)]−
E[Ij1(α)]E[Ij2(α)] then separately deal with the term |E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]| and the
term |E [Ij1(α)]E [Ij2(α)]− E [Wj1(α)]E [Gj2(α)]|.

By Lemma A.5, we have up to some constant factor,

|E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]|
α2

≤ η(d, n, ζ1, ζ2, αL)

α
.

Applying the same strategy to the term E [Ij1(α)]E [Ij2(α)], we obtain

|E [Ij1(α)]E [Ij2(α)]− E [Wj1(α)]E [Gj2(α)]|
α2

≤ η(d, n, ζ1, ζ2, αL)

α
.

Combining the above two inequalities, and noting the definition of III′3 in (A.21), we derive the
following bound on the difference between III3 and III′3,

∣∣III3 − III′3
∣∣ ≤ 1

ε2

λd∑
m=1

η(d, n, ζ1, ζ2, αL)

αm
≤ C ′tλd
ρε2hd

· η(d, n, ζ1, ζ2, αL).

where the second inequality holds due to the fact αm ≥ αL ∀ 1 ≤ m ≤ λd and tλd = (λd − 1)hd,
the definition αL = q|B|/d in the proof of Theorem 5.2, and the definition ρ = |B|/d in Section 5.

The above bound on |III3 − III′3|, when combined with Lemma A.4, immediately establishes

III3 ≤ C ′tλd
ρε2hd

· η(d, n, ζ1, ζ2, αL) +
C ′′tλd
ρε2d0hd

(
1 + CΘ

|S| log d

d0p

)
≤ C ′′′tλd

ρε2d0hd

(
1 + η(d, n, ζ1, ζ2, αL)d0 +

|S| log d

d0p

)
,

for some constant C ′′′.

Lemma A.4. Recalling the term III′3 from (A.21) in the proof of Lemma A.3, we have

III′3 =

λd∑
m=1

∑
j1,j2∈H0,j1 6=j2 Cov(Wj1(αm),Wj2(αm))

ε2d2
0α

2
m

≤ C ′′tλd
ρε2d0hd

(
1 + CΘ

|S| log d

d0p

)
.

Proof of Lemma A.4. Similarly as in the proof of Lemma A.3, we define (Ze)e∈N0j1
∪N0j2

to be jointly
Gaussian such that this (|N0j1 |+|N0j2 |)-dimensional Gaussian random vector shares the same mean
vector and covariance matrix as the term ( 1√

n ΘjjΘkk

∑n
i=1 Θ>j (XiX

>
i Θk − ek))(j,k)∈N0j1

∪N0j2
.

Note that the two sub-vectors (Ze)e∈N0j1
and (Ze)e∈N0j1

are generally dependent. Then we define
(Z ′e)e∈N0j1

, (Z ′e)e∈N0j2
to be two Gaussian random vectors such that

(Z ′e)e∈N0j1

d
= (Ze)e∈N0j1

, (Z ′e)e∈N0j2

d
= (Ze)e∈N0j2

and (Z ′e)e∈N0j1
⊥⊥ (Z ′e)e∈N0j2

. (A.22)
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Recalling the definition of Wj(α) in (A.20): Wj(α) = 1(maxe∈N0j |Ze| ≥ c(α,N0j)), we thus have
the following,

IVj1j2(α) :=
|Cov(Wj1(αm),Wj2(αm))|

α2
(A.23)

=
|E [Wj1(α)Wj2(α)]− E [Wj1(α)]E [Wj2(α)]|

α2

=
1

α2

∣∣∣P( max
e∈N0j1

|Ze| ≥ c(α,N0j1), max
e∈N0j2

|Ze| ≥ c(α,N0j2))−

P( max
e∈N0j1

|Z ′e| ≥ c(α,N0j1), max
e∈N0j2

|Z ′e| ≥ c(α,N0j2))
∣∣∣

=
1

α2

∣∣∣P( max
e∈N0j1

|Ze| ≥ t, max
e∈N0j2

|Ze| ≥ t)− P( max
e∈N0j1

|Z ′e| ≥ t, max
e∈N0j2

|Z ′e| ≥ t)
∣∣∣

=
1

α2

∣∣∣P( max
e∈N0j1

∪N0j2

|Ze| ≥ t)− P( max
e∈N0j1

∪N0j2

|Z ′e| ≥ t)
∣∣∣, (A.24)

where the third equality follows due to the construction of (Ze)e∈N0j1
∪N0j2

, (Z ′e)e∈N0j1
∪N0j2

. Note
that in the fourth equality, we assume c(α,N0j1) = c(α,N0j2) := t without loss of generality, since
we can rescale one of the maximum statistic by rescaling the Gaussian random vectors. Remark
that the scaling will not break down the application of Theorem 3.2, which will be explained
in detail later in this proof. The last inequality holds by (A.22) and the fact that P (A ∩B) =
P (A) + P (B)− P (A ∪B).

Notice that we can apply the Cramér-type Gaussian comparison bound with `0 norm to con-
trol (A.24). Specifically, we first figure out the difference between the covariance matrices of
(Ze)e∈N0j1

∪N0j2
and (Z ′e)e∈N0j1

∪N0j2
. Denote the covariance matrices by ΣZ and ΣZ′ respectively.

As these two Gaussian random vectors have two sub-vectors, we write their covariance matrices in
a block form

ΣZ =

(
ΣZ

11 ΣZ
12

ΣZ
21 ΣZ

22

)
, ΣZ′ =

(
ΣZ′

11 O

O ΣZ′
22

)
.

where ΣZ′ is block diagonal due to (A.22). Note that we also have ΣZ
11 = ΣZ′

11 and ΣZ
22 = ΣZ′

22 .
Then we have

ΣZ −ΣZ′ =

(
O ΣZ

12

ΣZ
21 O

)
. (A.25)

Throughout the following proof, we assume Θjj = 1, j ∈ [d] without loss of generality, since
the standardized version is considered in T̆E (A.5). Recall that (Ze)e∈N0j1

∪N0j2
shares the same

covariance structure as (Ye)e∈N0j1
∪N0j2

where Ye (with e = (j, k)) is defined as

Ye :=
1√
n

n∑
i=1

Θ>j (XiX
>
i Θk − ek).

Then we are ready to calculate the covariance matrix ΣZ . Specifically, we compute the entries in
each block. Regarding the block ΣZ

11, for any k, k′ ∈ N0j1 where N0j1 = {k : Θj1k = 0}, we have
the corresponding (k, k′) entry in ΣZ

11 equals

Cov(Θ>j1(XiX
>
i Θk − ek),Θ

>
j1(XiX

>
i Θk′ − ek′)) = Θj1j1Θkk′ + Θj1kΘj1k′ = Θkk′ , (A.26)

by applying Isserlis’ theorem (Isserlis, 1918) and noting Θj1k = Θj1k′ = 0. Similar results hold
for the block ΣZ

22. Regarding the block ΣZ
12, consider k1 ∈ N0j1 , k2 ∈ N0j2 , then we have the
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corresponding (k1, k2) entry in the block equals

Cov(Θ>j1(XiX
>
i Θk1 − ek1),Θ>j2(XiX

>
i Θk2 − ek2)) = Θj1j2Θk1k2 + Θj1k2Θj2k1 . (A.27)

Now we have fully characterized the covariance matrix ΣZ and the covariance matrix differ-
ence in (A.25) for any j1, j2 ∈ H0, j1 6= j2. Specifically, we have ||ΣZ − ΣZ′ ||0 = ||ΣZ

12||0 =∑
k1∈N0j1

,k2∈N0j2
1(Θj1j2Θk1k2 + Θj1k2Θj2k1 6= 0). Based on whether Θj1j2 is zero or not, we con-

sider the following two cases then handle them separately:

• Case 1: Θj1j2 = 0. If k1 = k2, then we have the covariance matrix entry (A.27) equal zero;
If k1 6= k2, then (A.27) is nonzero only if Θj1k2 6= 0,Θj2k1 6= 0 (i.e., k2 /∈ N0j1 , k1 /∈ N0j2).
By the fact j1, j2 ∈ H0, j1 6= j2 and the definition of H0 = {j : ‖Θj,−j‖0 < kτ}, we have
#{(k1, k2) : k1 6= k2,Θj1k2 6= 0,Θj2k1 6= 0} ≤ k2

τ . Hence ||ΣZ −ΣZ′ ||0 ≤ k2
τ .

• Case 2: Θj1j2 6= 0. The covariance matrix entry (A.27) is nonzero only if Θj1k2 6= 0,Θj2k1 6= 0
(i.e., k2 /∈ N0j1 , k1 /∈ N0j2) or Θk1k2 6= 0.

We start from the simpler case, i.e., Case 2 where Θj1j2 6= 0. Simply, we obtain

IVj1j2(α) =
|Cov(Wj1(α),Wj2(α))|

α2
≤ Var(Wj1(α))

α2
+

Var(Wj2(α))

α2
≤ C

α
,

for some constant C since Var (Wj(α)) = E [Wj(α)] (1−E [Wj(α)]) = α(1−α) for j = j1, j2. For a
fixed j1, we also know that |{j2 ∈ H0 : j2 6= j1,Θj1j2 6= 0}| < kτ . Then we have

λd∑
m=1

∑
Θj1j2

6=0

IVj1j2(αm)

ε2d2
0

≤
λd∑
m=1

d0kτ
ε2d2

0

· C
αm
≤ 1

ε2d0

λd∑
m=1

C ′

αm
, (A.28)

where the last inequality holds due to the same derivations for III1 in the proof of Lemma A.2.
Regarding Case 1 where Θj1j2 = 0, we will give a more careful treatment to IVj1j2(α) in (A.23).

Due to the discussion about Case 1, we have ||ΣZ−ΣZ′ ||0 ≤ k2
τ . This fact will be utilized to derive

a nice bound on III′3. Indeed, we can apply Theorem 3.2 to (A.24) (with U and V chosen to be
Ze)e∈N0j1

∪N0j2
and (Z ′e)e∈N0j1

∪N0j2
respectively) and obtain

IVj1j2(α) ≤ log d

αp

 ∑
k1∈N0j1

,k2∈N0j2
,k1 6=k2

1(Θj1k2Θj2k1 6= 0)

 . (A.29)

when Θj1j2 = 0 (i.e., under Case 1). Recall Theorem 3.2 assumes for Gaussian random vectors
U and V , there exists a disjoint p-partition of nodes ∪p`=1C` = [d] such that σUjk = σVjk = 0 when
j ∈ C` and k ∈ C`′ for some ` 6= `′. This is the connectivity assumption. Theorem 3.2 also
assumes that U and V have unit variances i.e., σUjj = σVjj = 1, j ∈ [d] and there exists some σ0 < 1

such that |σVjk| ≤ σ0 for any j 6= k and |{(j, k) : j 6= k, |σUjk| > σ0}| ≤ b0 for some constant b0.
Under its general version (which is actually proved in Appendix B.2), we only need to assume
a0 ≤ σUjj = σVjj ≤ a1, ∀j ∈ [d], and given any j ∈ C` with some `, there exists at least one m ∈ C`′
such that σUjj = σVjj = σUmm = σVmm for any `′ 6= `. From now, we will call it the general variance

condition. Accordingly, we assume there exists some σ0 < 1 such that |σVjk/
√
σVjjσ

V
kk| ≤ σ0 for any

j 6= k and |{(j, k) : j 6= k, |σUjk|
√
σUjjσ

U
kk > σ0}| ≤ b0 for some constant b0. Such condition is referred
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as the general covariance assumption. Below we give the details of applying Theorem 3.2 (with a
general version of the variance assumption) by checking those three conditions.

We start from the connectivity assumption and the general variance condition. Notice that
in Section 5, p denotes the number of connected components in the associated graph G of X.
Then we know there exist disjoint partitions of nodes ∪p`=1C

X
` = [d] such that Θjk = 0 when

j ∈ CX` , k ∈ CX`′ for some ` 6= `′. We will utilize this fact to examine the covariance matrices of
U := (Ze)e∈N0j1

∪N0j2
and V := (Z ′e)e∈N0j1

∪N0j2
and show the connectivity assumption holds. Note

that for given j1, j2 ∈ H0, j1 6= j2, there exist at least p− 2 components ∪p−2
`=1C

X
` such that j1 and

j2 do not belong to them. Without loss of generality, we write j1, j2 /∈ ∪p−2
`=1C

X
` . Thus we have

∪p−2
l=1 C

X
` ⊂ N0j1 ∩N0j2 by definition.

In the following, we will show the number of connected components on the associated graph of
the Gaussian random vector U := (Ze)e∈N0j1

∪N0j2
is at least 2(p − 2) by examining its covariance

matrix ΣZ . First we focus on the covariance entries in the block ΣZ
11. When `1, `2 ∈ [p − 2] and

`1 6= `2, we have for any k ∈ CX`1 , k
′ ∈ CX`2 (thus k, k′ ∈ N0j1 ∩ N0j2), the (k, k′) covariance entry

(A.26) in the block ΣZ
11 equals

Θj1j1Θkk′ + Θj1kΘj1k′ = Θj1j1Θkk′ = 0, (A.30)

where the first equality holds since k, k′ ∈ N0j1 , and the second equality holds since `1 6= `2.
Similarly, we have the (k, k′) covariance entry in the block ΣZ

22 also equals to zero. Next we compute
the covariance entries in the block ΣZ

12. For the same (k, k′), we know that k ∈ N0j1 , k
′ ∈ N0j2 .

Thus the corresponding covariance entry (A.27) equals

Θj1j2Θkk′ + Θj1k′Θj2k = 0, (A.31)

since we also have k ∈ N0j2 , k
′ ∈ N0j1 and k ∈ CX`1 , k

′ ∈ CX`2 for some `1 6= `2. Denote the nodes in

the associated graph of ΣZ by VZ := {(j, k) : k ∈ N0j , j = j1, j2}. Remark here we use a pair (j, k)
to represent a node since there exists some k ∈ N0j1∩N0j2 and we have to distinguish the covariance

entries (j1, k) and (j2, k). Based on previous calculations, we immediately find ∪2(p−2)
`=1 CZ` ⊂ VZ ,

where CZ` is chosen to be

CZ` =

{
{(j1, k) : k ∈ CX` } when 1 ≤ ` ≤ p− 2,
{(j2, k) : k ∈ CX` } when p− 1 ≤ ` ≤ 2(p− 2).

(A.32)

Further, we know they form different components on the associated graph of ΣZ . This is due to
(A.30) and (A.31). The above results also apply to the Gaussian random vector V := (Z ′e)e∈N0j1

∪N0j2

by construction of Z ′e, i.e., we have the same subset of nodes ∪2(p−2)
`=1 CZ` ⊂ VZ from different com-

ponents on the associated graph of ΣZ′ .
When k ∈ C` for some ` ∈ [p− 2], the corresponding diagonal entries of the covariance matrices

ΣZ ,ΣZ′ equal
Θj1j1Θkk + Θj1kΘj1k = Θj1j1Θkk = 1 = Θj2j2Θkk,

where the first equality holds since Θj1k = 0 when k ∈ C` ⊂ N0j1 . As for the second equality, we

use the fact that Θjj = 1, j ∈ [d]. This is because T̆E in (A.5) considers the standardized version
Θjk/

√
ΘjjΘkk. Remark that the rescaling in Lemma A.4 is performed on one of the two random

vectors (Z ′e)e∈N0j1
, (Z ′e)e∈N0j2

. Then we have the variances across the p−2 components ∪p−2
`=1C

Z
` are

the same. The variances across the other p − 2 components ∪2(p−2)
`=p−1C

Z
` are also the same. Finally,
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we show there exist at least p− 2 components ∪p−2
`=1C

Z
` (or ∪2(p−2)

`=p−1C
Z
` ) satisfying the requirement in

the connectivity assumption and the general variance condition.
Regarding the general covariance condition, we first note that Θ ∈ U(M, s, r0) which says that

λmin(Θ) ≥ 1/r0, λmax(Θ) ≤ r0. Thus we have maxj,k∈[d],j 6=k |Θjk| ≤ σ0 for some σ0 < 1. Below

we will examine all the off-diagonal entries of ΣZ and ΣZ′ . Regarding the block ΣZ
11, for any

k, k′ ∈ N0j1 , k 6= k′ where N0j1 = {k : Θj1k = 0}, (A.26) says that the corresponding (k, k′) entry in
ΣZ

11 equals Θkk′ (here we have |Θkk′ | ≤ σ0). Similar results hold for the block ΣZ
22. Regarding the

block ΣZ
12, consider k1 ∈ N0j1 , k2 ∈ N0j2 , then we have the corresponding (k1, k2) entry in the block

equals Θj1k2Θj2k1 . This is due to (A.27) and the fact that Θj1j2 = 0 under Case 1. Only when
k2 = j1, k1 = j2, we have Θj1k2Θj2k1 = 1. Otherwise, |Θj1k2Θj2k1 | ≤ σ2

0 < σ0 always holds. As for
the ΣZ′ , since its block ΣZ′

12 = O, we immediately have the absolute values of all its off-diagonal
entries is bounded by σ0. In summary, we verify the covariance condition of Theorem 3.2 (here U
and V are chosen to be Ze)e∈N0j1

∪N0j2
and (Z ′e)e∈N0j1

∪N0j2
respectively).

Having checked all the three conditions, we now obtain

λd∑
m=1

∑
Θj1j2

=0

IVj1j2(αm)

ε2d2
0

≤
λd∑
m=1

{
1

ε2d2
0

· log d

αmp

( ∑
k1∈N0j1

,k2∈N0j2
,k1 6=k2

1(Θj1k2Θj2k1 6= 0)

)}

≤ CΘ|S| log d

ε2d0p

(
1

d0

λd∑
m=1

C ′

αm

)
, (A.33)

where S represents the set

S = {(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 6= j2, k1 6= k2,Θj1j2 = Θj1k1 = Θj2k2 = 0,Θj1k2 6= 0,Θj2k1 6= 0}

as defined in Section 5, and CΘ is some universal constant over Θ ∈ U(M, s, r0). Finally, combining
(A.33) with (A.28), we obtain the following bound on III′3,

III′3 ≤ CΘ|S| log d

ε2d0p

(
1

d0

λd∑
m=1

C ′

αm

)
+

1

ε2d0

λd∑
m=1

C ′

αm

=

(
1 +

CΘ|S| log d

d0p

)
· 1

ε2d0

λd∑
m=1

C ′

αm

≤ C ′′tλd
ρε2d0hd

(
1 +

CΘ|S| log d

d0p

)
,

where the last inequality holds due to the same derivations for III1 in the proof of Lemma A.2.

Lemma A.5. Recall the definitions of Ij(α) and Wj(α) in (A.19) and (A.20), for j1, j2 ∈ H0, j1 6=
j2, when α ∈ [αL, 1], we have∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]

∣∣ ≤ η(d, n, ζ1, ζ2, αL)α. (A.34)
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Proof of Lemma A.5. First express
∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]

∣∣ as∣∣E [Ij1(α)Ij2(α)]− E [Wj1(α)Wj2(α)]
∣∣

=
∣∣∣P( max

e∈N0j1

√
n|Θ̃d

e | ≥ ĉ(α,N0j1), max
e∈N0j2

√
n|Θ̃d

e | ≥ ĉ(α,N0j2)
)

− P
(

max
e∈N0j1

|Ze| ≥ c(α,N0j1), max
e∈N0j1

|Ze| ≥ c(α,N0j2)
)∣∣∣

=
∣∣∣P(TN0j1

≥ ĉ(α,N0j1), TN0j2
≥ ĉ(α,N0j2)

)
− P

(
max
e∈N0j1

|Ze| ≥ c(α,N0j1), max
e∈N0j1

|Ze| ≥ c(α,N0j2)
)∣∣∣, (A.35)

where the second equality holds by the definition of TE in (A.3) and the definitions of N0j1 , N0j2 .
Now proving the bound in (A.34) is reduced to showing∣∣∣P(TN0j1

≥ ĉ(α,N0j1), TN0j2
≥ ĉ(α,N0j2)

)
− P

(
max
e∈N0j1

|Ze| ≥ c(α,N0j1), max
e∈N0j1

|Ze| ≥ c(α,N0j2)
)∣∣∣

≤ η(d, n, ζ1, ζ2, αL)α.

(A.36)

We first relate the notations in the above expression to the notations in Appendix C: TN0j1
, TN0j2

correspond to T ; ĉ(α,N0j1), ĉ(α,N0j2) correspond to qξ(α, T
B); maxe∈N0j1

|Ze|,maxe∈N0j2
|Ze| cor-

respond to TZ ; c(α,N0j1), c(α,N0j2) correspond to q(α;TZ). In Appendix C, we prove Propositions
C.1 and C.2. And the strategy can be used to derive the bound on (A.35). First, we note that
TN0j1

, TN0j2
satisfy the conditions of Proposition C.2, i.e., (C.4) and (C.5). This is due to the same

derivations as the first parapraph of the proof of Lemmma A.2. Since the proving strategy is quite
similar, we omit the proof of (A.36) for simplicity. Instead, we prove (A.37), i.e., when α ∈ [αL, 1],

D :=
∣∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))

∣∣∣
≤ Cα

(
(log d)11/6

n1/6α
1/3
L

+
(log d)19/6

n1/6

)
,

(A.37)

where TY1 , TY2 correspond to T̆E with E = N0j1 , N0j2 respectively, TW1 , TW2 correspond to T̆BE with
E = N0j1 , N0j2 respectively, and TZ1 = maxe∈N0j1

|Ze|, TZ2 = maxe∈N0j2
|Ze|. As for the quan-

tiles, qξ(α;TW1), qξ(α;TW2) are the Gaussian multiplier bootstrap quantiles based on TW1 , TW2 .
q(α;TZ1), q(α;TZ2) are the quantiles of the Gaussian maxima TZ1 , TZ2 . Denote A1 = {TY1 ≥
qξ(α;TW1)}, A2 = {TY2 ≥ qξ(α;TW2)}, B1 = {TY1 ≥ q(α;TZ1)}, B2 = {TY2 ≥ q(α;TZ2)}, we have

D12 :=
∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TY1 ≥ q(α;TZ1), TY2 ≥ q(α;TZ2))

∣∣
≤ P ((A1 ∩A2)	 (B1 ∩B2))

= P ((A1 ∩A2) ∩ (Bc
1 ∪Bc

2)) + P ((B1 ∩B2) ∩ (Ac1 ∪Ac2))

≤ P (A1 ∩Bc
1) + P (A2 ∩Bc

2) + P (B1 ∩Ac1) + P (B2 ∩Ac2)

= P ((A1 ∩Bc
1) ∪ (B1 ∩Ac1)) + P ((A2 ∩Bc

2) ∪ (B2 ∩Ac2))

= P (A1 	B1) + P (A2 	B2) . (A.38)

By (C.14) and (C.15), we can bound (A.38) as

D12 ≤ P (A1 	B1) + P (A2 	B2) ≤ 2C ′α

(
(log d)11/6

n1/6α
1/3
L

+
(log d)19/6

n1/6

)
. (A.39)
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By the triangle inequality, we have the following bound on D,

D =
∣∣∣P (TY1 ≥ qξ(α;TW1), TY2 ≥ qξ(α;TW2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))

∣∣∣
≤ D12 +

∣∣∣P (TY1 ≥ q(α;TZ1), TY2 ≥ q(α;TZ2))− P (TZ1 ≥ q(α;TZ1), TZ2 ≥ q(α;TZ2))
∣∣∣.

≤ D12 +
∣∣∣P (TY1 ≥ q(α;TZ1))− P (TZ1 ≥ q(α;TZ1))

∣∣+
∣∣P (TY2 ≥ q(α;TZ2))− P (TZ2 ≥ q(α;TZ2))

∣∣∣
+
∣∣∣P ({TY1 ≥ q(α;TZ1)} ∪ {TY2 ≥ q(α;TZ2)})− P ({TZ1 ≥ q(α;TZ1)} ∪ {TZ2 ≥ q(α;TZ2)})

∣∣∣︸ ︷︷ ︸
D′12

,

(A.40)

where the last inequality holds since P (A ∩B) = P (A) + P (B)− P (A ∪B). For the second term
and the third term in (A.40), we can directly apply the results (C.10) in Proposition C.1 and bound
them as∣∣∣P (TY1 ≥ q(α;TZ1))− P (TZ1 ≥ q(α;TZ1))

∣∣+
∣∣P (TY2 ≥ q(α;TZ2))− P (TZ2 ≥ q(α;TZ2))

∣∣∣
≤ Cα · (log d)19/6

n1/6

(A.41)

for some constant C. Regarding the term D′12, we assume q(α;TZ2) = q(α;TZ2) := t without loss
of generality. This is because q(α;TZ1), q(α;TZ2) are all deterministic values and we can rescale
the random vector inside one of the maximum statistics TZ1 , TZ2 . Now we rewrite D′12 based on
q(α;TZ2) = q(α;TZ2) = t and derive the following bound:

D′12 =
∣∣∣P (max{TY1 , TY2} ≥ t)− P (max{TZ1 , TZ2} ≥ t)

∣∣∣ (A.42)

≤ C ′′(log d)19/6

n1/6
· P (max{TZ1 , TZ2} ≥ t)

≤ C ′′(log d)19/6

n1/6
·
(
P (TZ1 ≥ q(α;TZ1)) + P (TZ2 ≥ q(α;TZ2))

)
= 2C ′′α · (log d)19/6

n1/6
, (A.43)

where the first inequality holds by applying Corollary 5.1 of Kuchibhotla et al. (2021) similarly as
in the derivation of (C.10). Here we briefly explain why Corollary 5.1 of Kuchibhotla et al. (2021)
is applicable to (A.42). Note that max{TY1 , TY2} = TY12 is the maximum statistic with respect
to the random vectors which concatenate the random vectors involved in TY1 , TY2 . Write TY1 , TY2

explicitly as

TY1 :=

∥∥∥∥∥ 1√
n

n∑
i=1

Y
(1)
i

∥∥∥∥∥
∞

, TY2 :=

∥∥∥∥∥ 1√
n

n∑
i=1

Y
(2)
i

∥∥∥∥∥
∞

,

and denote Y
(12)
i = (Y

(1)
i ,Y

(2)
i ), then TY12 is defined as

TY12 :=

∥∥∥∥∥ 1√
n

n∑
i=1

Y
(12)
i

∥∥∥∥∥
∞

.
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By the definition of Z1,Z2, we have Cov((Z>1 ,Z
>
2 )>) = Cov((Y >1 ,Y >2 )>). Hence we can apply

Corollary 5.1 of Kuchibhotla et al. (2021) to (A.42). Now we combine (A.39), (A.40), (A.41) with
(A.43) and obtain the following bound

D ≤ Cα

(
(log d)11/6

n1/6α
1/3
L

+
(log d)19/6

n1/6

)
,

for some constant C, thus (A.37) is established. The above strategy of obtaining (A.37) can be
similarly applied to the term in (A.35), then establishes the bound in (A.34).

A.3 Proof of Theorem 4.2

Proof of Theorem 4.2. Throughout the proof, we condition on the design matrix X, but without
explicitly writing it out in order to simplify the notation. In the context of selecting hub response
variables, we recall H0 = {j ∈ [d1] : ||Θj ||0 ≥ kτ} and d0 = |H0|. For a non-hub response variable
j ∈ H0, let N0j be the set of its null covariates, i.e., N0j = {(j, k) : Θjk = 0}.

To establish FDR control, we follow the same derivations as in the proof of Theorem 5.2.
Specifically, it suffices to bound

λd∑
m=1

Var[
∑

j∈H0
Ij(αm)− d0αm]

ε2d2
0α

2
m

+

λd∑
m=1

(E[
∑

j∈H0
Ij(αm)− d0αm])2

ε2d2
0α

2
m

+

λd∑
m=1

∑
j1,j2∈H0,j1 6=j2 Cov(Ij1(αm), Ij2(αm))

ε2d2
0α

2
m

:= III1 + III2 + 0 (A.44)

for any ε > 0. In the above terms, the sequence {αm}λdm=1 is chosen similarly as in the proof of
Theorem 5.2 and Ij(α) is defined as

Ij(α) = 1( max
e∈N0j

√
n|Θ̃d

e | ≥ ĉ(α,N0j)),

where Θ̃d
j is the debiased Lasso estimator defined in (4.2). Note that the cross term in (A.44) equals

zero as Cov(Ij1(αm), Ij2(αm)) = 0. This is because Y (j), j ∈ [d1] are conditionally independent
given X. Therefore it suffices to bound III1 and III2. By applying Lemma A.2 with the term
η(d, n, ζ1, ζ2, αL) replaced by η0(d1, d2, n, ζ1, ζ2, αL) in Lemma A.8, (A.44) can be controlled by

III2 + III2 ≤
C ′tλd2
ε2hd2

(
d1

d0|B|
+ η0(d1, d2, n, ζ1, ζ2, αL)

)
,

where αL = q|B|/d1 and tλd2 , hd2 are similarly defined as in the proof of Theorem 5.2. According
to Lemma A.8, we have the explicit form of η0(d1, d2, n, ζ1, ζ2, δ, αL):

η0(d1, d2, n, ζ1, ζ2, δ, αL) = ζ1 log d2 + (log d2)5/2δ1/2 +
η + ζ2

αL
,

where ζ1 = O(s log d2/
√
n), ζ2 = O(e−c1n + d−c̃0∧c22 ), δ satisfies 1

δ

√
s log d2
n = O(1) and η = e−c1n +

1
d2

+ 1
nδ2

. By rearranging, we obtain the following bound on III2 + III2:

log d2

ε2

(
1

d0ρ
+
s(log d2)2

n1/2
+ (log d2)5/2δ1/2 +

1

nδ2ρ
+

1

ρ

( 1

d2
+ e−c1n + d−c̃0∧c22

))
.
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where ρ = B/d1. We choose δ to be 1
(nρ)2/5 log d2

and have δ > 1
n2/5 log d2

(since ρ < 1). Thus this

choice of δ satisfies the requirement in Lemma A.8. Finally we have (A.44) is bounded as

log d2

ε2

(
1

d0ρ
+
s(log d2)2

n1/2
+

(log d2)2

(nρ)1/5
+

1

ρd2

)
.

Under the stated assumption in Theorem 4.2, the above term is o(1). Thus the FDP control result
is established. Due to similar derivations as in Theorem 5.2, the FDR control result follows.

A.4 Ancillary lemmas for Theorem 4.2

To prove FDR control, we will establish a key result, i.e., Lemma A.8 in this section. Recall that
in Section 4, we utilize the following result

√
n(Θ̃d

j −Θj) = Zj + Ξ, Zj |X ∼ N (0, σ2
jMΣ̂M>).

and approximate the quantile of the maximum statistics TE = max(j,k)∈E
√
n|Θ̃d

jk| by TNE =
max(j,k)∈E |Zjk|. Lemma A.8 basically establishes the Cramér deviation bounds for such quan-
tile approximation. Note that this lemma can be seen as a special case of Proposition C.1 since
the involving random vector

√
n(Θ̃d

j −Θj) can be decomposed into a Gaussian random vector plus
some error term. Hence we do not need to use the results in Kuchibhotla et al. (2021) to handle
the case of a general random vector (and quantify Gaussian approximation errors).

In this section, we will define some notations similar to the theoretical results in Appendix C.
First, we will drop the j-th subscript for simplicity. Without loss of generality, we prove relevant
results for E = {(j, k) : k ∈ [d2]} and drop the subscript E. Note the results hold for any j ∈ [d1]
and any subset of {(j, k) : k ∈ [d2]}. Now we rewrite (4.4) using new notations, i.e.,

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0, σ2
jMΣ̂M>), (A.45)

and denote its maximum by TZ = ||Z||∞. Intuitively, we can use the quantile of TZ to approximate
the quantile of T :=

√
n||Θ̃d

j − Θj ||∞. Since the covariance matrix σ2
jMΣ̂M> of the Gaussian

random vector Z is not completely known, we can not directly compute its quantile (denoted
by q(α;Z)). Instead, we first estimate the unknown parameter σj by σ̂j , which is constructed

according to (4.5). Then we define W ∼ N (0, σ̂2
jMΣ̂M>) (given the data X,Y (j)), and denote its

maximum by TW = ||W ||∞. We will approximate the unknown quantile of T by the conditional
quantile qξ(α;TW ). Here we use the ξ subscript to emphasize that we are conditioning on the data
when defining such quantiles.

Due to the existence of the term Ξ in (A.45), there also exist additional estimation errors
when we approximate the quantiles of T by the conditional quantiles qξ(α;TW ). Lemma A.7
characterizes such approximation errors. As for the difference between the distributions of the two
Gaussian random vectors W and Z, Lemma A.7 provides a bound on the maximal difference of
their covariance matrices, which is denoted by ∆∞. Finally, Lemma A.8 builds on these results
and establishes the Cramér-type deviation bounds for the quantile approximation of T .

Lemma A.6. In the context of multiple linear models, we have

P(|T − TZ | > ζ1) < ζ2,

where ζ1 = O(s log d2/
√
n) and ζ2 = O(e−c1n + d−c̃0∧c22 ).
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Proof of Lemma A.6. By Theorem 2.5 in Javanmard and Montanari (2014a), we have

√
n(Θ̃d

j −Θj) = Z + Ξ, Z|X ∼ N (0, σ2
jMΣ̂M>),

and

P
(
‖Ξ‖∞ ≥

(16ac σ

Cmin

)s log d2√
n

)
≤ 4 e−c1n + 4 d−c̃0∧c22 .

Thus we immediately obtain the following bound on the difference between T and TZ :

P(|T − TZ | > ζ1) < ζ2

where ζ1 = O(s log d2/
√
n) and ζ2 = O(e−c1n + d−c̃0∧c22 ).

Lemma A.7. For the the maximal difference term ∆∞ = ||σ̂2MΣ̂M> − σ2MΣ̂M>||max, we have

P (∆∞ ≥ δ) ≤ η, (A.46)

where δ satisfies 1
δ

√
s log d2
n = O(1) and η = O

(
e−c1n + 1

d2
+ 1

nδ2

)
.

Proof of Lemma A.7. To bound ∆∞, we start with the term |σ̂/σ − 1|. First we denote

En = En(φ0, s0,K) :=
{
X ∈ Rn×d1 : min

S:|S|≤s0
φ(Σ̂, S) ≥ φ0, max

j∈[d1]
Σjj ≤ K,Σ = (X>X)/n

}
similarly as in Theorem 7.(a) of Javanmard and Montanari (2014a), where φ(Σ̂, S) is the compati-
bility constant as defined in Definition 1 of Javanmard and Montanari (2014a). Following the proof
of Lemma 14 in Javanmard and Montanari (2014a), we have

P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε) ≤ P (X /∈ En) + sup

X∈En
P
(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε ∣∣∣X)

≤ 4e−c1n + sup
X∈En

P
( ||X>E||∞

nσ?
≥ λ̃/4

∣∣∣X)+ sup
X∈En

P
(∣∣∣σ?
σ
− 1
∣∣∣ ≥ ε

10

∣∣∣X)
(A.47)

where λ̃ = 10
√

(2 log d2)/n, σ? is the oracle estimator of σ introduced in Sun and Zhang (2012)

and ε satisfies 2
√
sλ̃

σ?φ0
≤ ε

2 < a0.
Now we separately bound the last two terms in (A.47). The second term in (A.47) can be

bounded by the derivation in the proof of Theorem 2 (ii) (Sun and Zhang, 2012), i.e.,

sup
X∈En

P
( ||X>E||∞

nσ?
≥ λ̃/4

∣∣∣X) ≤ d2P
(
|Lk| ≥

√
2 log(d

25/4
2 )/n

∣∣∣X)
≤ d2 ·

C

d
25/4
2

√
log d2

≤ C

d2
, (A.48)

where Lk is the k-th element of X>E
nσ? and

√
n−1Lk√
1−L2

k

follows the Student’s t-distribution with n − 1

degrees of freedom. Then (A.48) holds due to equation (A7) in Sun and Zhang (2012) together
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with the union bound. As for the last term in (A.47), we note n(σ?/σ)2 follows the χ2
n distribution

according to Sun and Zhang (2012). Thus by Markov’s inequality, we have

sup
X∈En

P
(∣∣∣σ?
σ
− 1
∣∣∣ ≥ ε

10

∣∣∣X) ≤
C ′E

[
(n(σ?/σ)2 − n)2

]
n2ε2

≤ 2C ′

nε2
. (A.49)

Now we arrive at the following bound on ∆∞:

P
(

∆∞ ≥ (ε2 + 2ε) · σ2||MΣ̂M>||max

)
= P

(
||σ̂2MΣ̂M> − σ2MΣ̂M>||max ≥ (ε2 + 2ε) · σ2||MΣ̂M>||max

)
≤ P

(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε)

≤ 4e−c1n +
C

d2
+

2C ′

nε2
,

where the last inequality comes from combining (A.47), (A.48) with (A.49). Note that the proof
of Theorem 16 in Javanmard and Montanari (2014a) shows that ||MΣ̂M>||max = O(1). Hence, we
finally establish (A.46) with

δ = σ2(ε2 + 2ε)||MΣ̂M>||max = Cσε, η = O

(
e−c1n +

1

d2
+

1

nδ2

)
.

where Cσ is some constant and δ = Cσε satisfies 1
δ

√
s log d2
n = O(1) due to the choice of ε.

Lemma A.8. Based on the result about the approximation error between T and TZ (Lemma A.6)
and the bound on ||∆||∞ in Lemma A.7, we have

sup
α∈[αL,1]

∣∣∣∣ P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O (η0(d1, d2, n, ζ1, ζ2, δ, αL)) , (A.50)

where η0(d1, d2, n, ζ1, ζ2, δ, αL) := ζ1 log d2 + (log d2)5/2δ1/2 + η+ζ2
αL

with ζ1 = O(s log d2/
√
n), ζ2 =

O(e−c1n+d−c̃0∧c22 ). Here δ is a term to be determined and we requite 1
δ

√
s log d2
n = O(1). η depends

on δ, i.e., η = e−c1n + 1
d2

+ 1
nδ2

.

Proof of Lemma A.8. First we have P(|T − TZ | > ζ1) < ζ2 by Lemma A.6, thus we obtain∣∣∣∣ P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ max{II1, II2}+
2ζ2

α

for α ∈ [αL, 1], where II1 and II2 are defined as:

II1 :=

∣∣∣∣P(TZ > q(α;TW ) + ζ1)

P(TZ > q(α;TZ))
− 1

∣∣∣∣ , II2 :=

∣∣∣∣P(TZ > q(α;TW )− ζ1)

P(TZ > q(α;TZ))
− 1

∣∣∣∣ .
The above two terms can be bounded similarly. Take II1 as an example, we use similar strategy

as in Proposition C.1. Consider the event S := {∆∞ ≤ δ} where δ satisfies 1
δ

√
s log d2
n = O(1), we

apply Lemma C.1 and bound II1 by

1

1− π(δ)
· II11 + II12 +

P (∆∞ > δ)

α
,

42



where II11 and II11 are defined as

II11 :=
1− π(δ)

α

∣∣∣P(TZ > q(
α

1− π(δ)
;TZ) + ζ1

)
− P(TZ > q(

α

1− π(δ)
;TZ))

∣∣∣,
II12 :=

1

α

∣∣∣P(TZ > q(
α

1− π(δ)
;TZ)

)
− P(TZ > q(α;TZ))

∣∣∣, (A.51)

where π(∆∞) = [A(∆∞) + 1]eM1(log d)3/2A(∆∞) − 1. By applying the part 3 of Theorem 2.1 in
Kuchibhotla et al. (2021) (with r + ε = q( α

1−π(δ) ;TZ) + ζ1, r − ε = q( α
1−π(δ) ;TZ)) to the Gaussian

random vector Z, we have

II11 ≤ K4ζ1

(
q(

α

1− π(δ)
;TZ) + ζ1/2

)
≤ Cζ1 log d2. (A.52)

where the second inequality holds due to the similar reason stated in the proof of Proposition C.2.
And the term II11 can be simply derived as

II12 =
1

α

∣∣∣ α

1− π(δ)
− α

∣∣∣ =
π(δ)

1− π(δ)
. (A.53)

Combing the results above, we have∣∣∣∣ P(T > q(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ C ′ζ1 log d2 +
π(δ)

1− π(δ)
+

π(δ)

1 + π(δ)
+

2P (∆∞ > δ)

α
+

2ζ2

α
.

Applying the bound in Lemma A.7, we finally establish (A.50) i.e., η0(d1, d2, n, ζ1, ζ2, αL) :=
ζ1 log d2 + (log d2)5/2δ1/2 + η+ζ2

αL
up to some constant factor, where η = e−c1n + 1

d2
+ 1

nδ2
.

B Proofs of Cramér-type comparison bounds

In this section, we will prove two types of Cramér-type comparison bounds: Theorems 3.1 and
3.2. One of the challenges to derive the comparison bounds for Gaussian maxima is that the
maximum function is non-smooth. In order to show the Cramér-type comparison bound, we first
consider smooth approximation of the maximum. The following lemma from Bentkus (1990) show
the existence of such smooth approximation.

Lemma B.1 (Theorem 1, Bentkus (1990)). Consider the Euclidean space Rd with `∞-norm, for
any t, ε ≥ 0, there exists a smooth approximating function ϕr,ε satisfying the following:

(a) ϕr,ε : Rd → [0, 1], ϕr,ε ∈ C∞, where C∞ is the smooth function class with functions differentiable
for all degrees of differentiation.

(b) ϕr,ε(x) = 1 if ||x||∞ ≤ r, ϕr,ε(x) = 0 if ||x||∞ ≥ r + ε,

(c) supx∈Rd ||Djϕr,ε(x)||1 ≤ c(j)ε−j logj−1(d+ 1),

where ||Djϕr,ε(x)||1 =
∑d

i1=1 · · ·
∑d

ij=1

∣∣∣ ∂jϕr,ε(x)
∂xi1 ···∂xij

∣∣∣ and the constants c(j) only depends on j.

Remark B.1. Kuchibhotla et al. (2021) gives a concrete example of ϕr,ε(x) satisfying the three
properties in Lemma B.1:

ϕr,ε(x) = g0

(
2(Fβ(zx − r12d)− ε/2)

ε

)
, (B.1)
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where β = 2 log(2d)/ε, g0(t) := 301(0 ≤ t ≤ 1)
∫ 1
t s

2(1 − s)2ds + 1(t ≤ 0), Fβ(·) is the “softmax”
function

Fβ(z) :=
1

β
log
( 2d∑
m=1

exp (βzm)
)

for z ∈ R2d,

zx = (x>,−x>)>, and 12d is the vector of 1’s of dimension 2d.
In fact, in the proof of Theorem 3.1, we do not need a specific form of ϕr,ε(x) and any function

satisfying Lemma B.1 will work. While in the proof of Theorem 3.2, we need to utilize the specific
form in (B.1).

B.1 Proof of Theorem 3.1

As mentioned in Remark 3.1, we can prove the Cramér-type comparison bound with max norm
difference as M3(log d)3/2A(∆∞)eM3(log d)3/2A(∆∞), without the assumption on ∆∞. Therefore we
state the more general form of Theorem 3.1 below and give its proof. Note that under the as-
sumption (log d)5∆∞ = O(1) and the discussions in Remark 3.1, the bound (3.1) in Theorem 3.1
immediately follows from Theorem B.2.

Theorem B.2 (CCB with max norm difference). Let U and V be two Gaussian random vectors
and we have

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤M3(log d)3/2A(∆∞)eM1(log d)3/2A(∆∞), (B.2)

where C0 > 0 is some constant, A(∆∞) = M1 log d∆
1/2
∞ exp (M2 log2 d∆

1/2
∞ ), the constants M1,M2

only depend on min1≤j≤d{σUjj , σVjj},max1≤j≤d{σUjj , σVjj}, and M3 is a universal constant.

Proof of Theorem B.2. Using the smooth approximation in Lemma B.1, we can bound the differ-
ence between the distribution functions of Gaussian maxima as∣∣P(||U ||∞ > t)− P(||V ||∞ > t)

∣∣
=

∣∣E[1(||U ||∞ ≤ t)− 1(||V ||∞ ≤ t)]
∣∣

≤ P(t− ε ≤ ||V ||∞ ≤ t+ ε) + max
j=1,2

|Eϕj(U)− Eϕj(V )| , (B.3)

where ϕ1(x) := ϕt,ε(x), ϕ2(x) := ϕt−ε,ε(x). Regarding the inequality in (B.3), we first notice that

1(||x||∞ ≤ t) = ϕt,ε(x)−1(t < ||x||∞ < t+ ε) ·ϕt,ε(x) = ϕt−ε,ε(x)−1(t− ε < ||x||∞ < t) ·ϕt−ε,ε(x),

where the first equality is due to property (b) in Lemma B.1. Hence we have

1(||U ||∞ ≤ t) ≤ ϕj(U), j = 1, 2

1(||V ||∞ ≤ t) ≥ ϕ1(V )− 1(t < ‖V ‖ < t+ ε),

1(||V ||∞ ≤ t) ≥ ϕ2(V )− 1(t− ε < ‖V ‖ < t),

then (B.3) immediately follows by combining the above three inequalities.
The first term in (B.3) is related to the anti-concentration inequalities for the Gaussian maxima.

By applying Theorem 2.1 in Kuchibhotla et al. (2021), we have

P(t− ε ≤ ||V ||∞ ≤ t+ ε) ≤ K1(t+ 1)ε exp(K2(t+ 1)ε)P(||V ||∞ > t). (B.4)
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The explicit forms of K1,K2 can be found in Theorem 2.1 of Kuchibhotla et al. (2021). They only
depend on min1≤j≤d{σUjj , σVjj},max1≤j≤d{σUjj , σVjj} and the median of Gaussian maxima. Remark

that the median of ||V ||∞ is bounded by O(
√

log d) by the maximal inequalities for sub-Gaussian
random variables (Lemma 5.2 in van Handel (2014)). Plugging this into the explicit form of K1,K2

in Theorem 2.1 of Kuchibhotla et al. (2021), we have K1 = O(log d),K2 = O(log2 d). Then (B.4)
can be written as

P(t− ε ≤ ||V ||∞ ≤ t+ ε) ≤M1 log d(t+ 1)ε exp(M2 log2 d (t+ 1)ε)P(||V ||∞ > t),

for some constants M1,M2 only depending on min1≤j≤d{σUjj , σVjj},max1≤j≤d{σUjj , σVjj}.
Overall the above bound has only a logarithmic dependence on the dimension d, similar to the

anti-concentration bounds from Chernozhukov et al. (2014). But it quantifies the deviation with
respect to the tail probability of the Gaussian maxima, thus offers a more refined characterization,
which is crucial to our proof.

Now we deal with the second term in (B.3). It is not hard to check that the following proof
works for both ϕ1 and ϕ2. Therefore, without loss of generality, we use a unified notation ϕ to
represent either functions. We consider the Slepian interpolation between U and V : W (s) :=√
sU +

√
1− sV, s ∈ [0, 1]. Let Ψt(s) = E[ϕ(W (s))], then we have

|Eϕ(U)− Eϕ(V )| = |Ψt(1)−Ψt(0)| =
∣∣∣∣∫ 1

0
Ψ′t(s)ds

∣∣∣∣ , (B.5)

where Ψ′t(s) = 1
2

∑d
j=1 E[∂jϕ(W (s))(s−1/2Uj − (1 − s)−1/2Vj)]. Applying Stein’s identity (Lemma

2 of Chernozhukov et al. (2015)) to (s−1/2Uj − (1− s)−1/2Vj ,W (s)>)> and ∂jϕ(W (s)), we have

Ψ′t(s) =
1

2

d∑
j,k=1

(σUjk − σVjk)E[∂j∂kϕ(W (s))]. (B.6)

Hence we obtain the following bound on (B.5),∣∣∣∣∫ 1

0
Ψ′t(s)ds

∣∣∣∣ ≤ 1

2

d∑
j,k=1

|σUjk − σVjk| ·
∣∣∣∣∫ 1

0
E[∂j∂kϕ(W (s))]ds

∣∣∣∣
≤ ∆∞

2

∫ 1

0

d∑
j,k=1

E[|∂j∂kϕ(W (s))|]ds

≤ ∆∞
2

∫ 1

0

d∑
j,k=1

E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds

≤ ∆∞
2

∫ 1

0
sup
x∈Rd

||D2ϕ(x)||1 · E[1(t− ε ≤ ||W (s)||∞ ≤ t+ ε))]ds

≤ c(2)∆∞ log(d+ 1)

2ε2

∫ 1

0
P(t− ε ≤ ||W (s)||∞ ≤ t+ ε)ds (B.7)

where the second inequality is by the definition of ∆∞ and the third one comes from the property
(b) in Lemma B.1 for ϕj(x), j = 1, 2 (recalling ϕ1(x) = ϕt,ε(x) and ϕ2(x) = ϕt−ε,ε(x)). Note that
property (c) gives a upper bound for the partial derivative terms. Thus the fourth inequality holds.

By the definition of Slepian interpolation, we have, for any s ∈ [0, 1], W (s) is a Gaussian random
vector and the variances can be controlled between min1≤j≤d{σUjj , σVjj} and max1≤j≤d{σUjj , σVjj}.
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The median of ||W (s)||∞ can also be similarly bounded by O(
√

log d) as ||V ||∞. Applying the
anti-concentration inequalities again to W (s) in (B.7), we thus obtain∣∣∣∣∫ 1

0
Ψ′t(s)ds

∣∣∣∣ ≤ c(2)∆∞ log(d+ 1)

2ε2
·M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε) ·

∫ 1

0
P(||W (s)||∞ > t)ds.

(B.8)

Let Qt(u) = P(||W (u)||∞ > t) and Rt(u) = Qt(u)/Qt(0) − 1. Combining (B.3), (B.4), (B.5) and
(B.8), we have

|Qt(1)−Qt(0)| =
∣∣P(||U ||∞ > t)− P(||V ||∞ > t)

∣∣
≤ M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε)Qt(0)

+
c(2)∆∞ log(d+ 1)

2ε2
M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε)

∫ 1

0
Qt(s)ds. (B.9)

If starting with the interpolation between W (s) and V instead of that between U and V , we can
similarly obtain the bound on |Qt(s)−Qt(0)|. And the integral

∫ 1
0 Qt(s)ds in (B.9) can be directly

replaced by
∫ u

0 Qt(s)ds. Namely, we have

|Qt(u)−Qt(0)|
|Qt(0)|

= |Rt(u)| ≤ A(t, ε)B(∆∞, ε)

∫ u

0
|Rt(s)|ds+A(t, ε)B(∆∞, ε) · u+A(t, ε), (B.10)

where we denote A(t, ε) = M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε) and B(∆∞, ε) = c(2)∆∞ log(d+1)
2ε2

.
Notice that (B.10) is an integral inequality and we can thus boundRt(s) by Grönwall’s inequality

(Grönwall, 1919)
|Rt(u)| ≤ (A(t, ε)B(∆∞, ε)u+A(t, ε))eA(t,ε)B(∆∞,ε)u.

In particular, we have |Rt(1)| ≤ (A(t, ε)B(∆∞, ε) + A(t, ε))eA(t,ε)B(∆∞,ε). Remember that ε is the

smoothing parameter that controls the level of approximation. Choosing ε = ∆
1/2
∞ /(t + 1), we

then have A(∆∞) := A(t, ε) = M1 log d∆
1/2
∞ exp (M2 log2 d∆

1/2
∞ ) for some constants M1,M2 only

depending on min1≤j≤d{σUjj , σVjj},max1≤j≤d{σUjj , σVjj} and B(t) := B(∆∞, ε) = c(2) log(d+1)(t+1)2

2 .

When 0 ≤ t ≤ C0
√

log d, we have B(t) ≤ M1(log d)3/2 for some universal constant M3. Therefore
the bound in (B.2) is established, i.e.,

sup
0≤t≤C0

√
log d

|Rt(1)| ≤M3(log d)3/2A(∆∞)eM3(log d)3/2A(∆∞).

B.2 Proof of Theorem 3.2

Before proving Theorem 3.2, we note its assumption about the connectivity can be relaxed. There-
fore, we first present Theorem B.4 with a weaker connectivity assumption, which is stated below.

Assumption B.3 (p-connectivity property). We say two Gaussian random vectors U and V satisfy
the p-connectivity property if for any j such that σUjk 6= σVjk for some k, there exists a subset E0 ⊂ [d]
satisfying the following three requirements:

(a) j ∈ E0, |E0| = p + 1;

(b) When m,m′ ∈ E0 and m 6= m′, σUmm = σUm′m′ and σUmm′ = σVmm′ = 0 hold;
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(c) ∀ k ∈ [d], |{m ∈ E0 : |σUkm|+ |σVkm| 6= 0}| ≤ c0 for some constant c0.

This assumption gives a characterization of the connectivity of the associated graphs of the
Gaussian random vectors U and V . Below we give a few sufficient conditions (SC) for it.

SC1 U and V have unit variances. There exists a disjoint (p + 2)-partition of nodes ∪p+2
`=1C` = [d]

such that σUjk = σVjk = 0 when j ∈ C` and k ∈ C`′ for some ` 6= `′.

SC2 U and V have unit variances. There exist disjoint partitions of nodes ∪p+2
`=1C

U
` = ∪p+2

`=1C
V
` = [d],

such that σUjk (σVjk) equals 0 when j, k belong to different elements CU` (CV` ), and ∀` ∈ [p+ 2],

CU` ∩ CV` 6= ∅.

SC3 ∀ s ∈ [0, 1], the Gaussian random vector W (s) :=
√
sU +

√
1− sV always has the same

variances σ2
s across different components. The associated graph of W (s) has at least p + 2

components, i.e., there exists a disjoint partition of nodes ∪p+2
`=1C

W
` = [d], such that each CW`

comes from a different component. And the partition ∪p+2
`=1C

W
` = [d] works any s ∈ [0, 1].

Remark B.2. Note that the above first condition SC1 is the main assumption of Theorem 3.2
(except that p + 2 is replaced by p). It is immediate that the condition SC1 implies SC2. We will
verify SC2 is indeed a sufficient condition of Assumption B.3 in the following paragraph. Regarding
SC3, its sufficiency can be verified similarly, thus we omit the details.

Simply, we have σUjj = σVjj = 1, j ∈ [d] by the unit variance assumption. For any j such that

σUjk 6= σVjk for some k, we will construct a subset E0 and show it satisfies the three requirements
(a), (b) and (c). Note that the condition SC1 assumes the existence of disjoint partitions of nodes
∪p+2
`=1C

U
` = ∪p+2

`=1C
V
` = [d]. We suppose j ∈ CU`1∩C

V
`2

for some `1, `2, then E0 is constructed by including

j and picking one element m` from CU` ∩ CV` for each ` ∈ [p + 2] \ {`1, `2}. As CU` ∩ CV` 6= ∅, ∀` ∈
[p + 2], we have |E0| ≥ 1 + p, hence the requirement (a) is satisfied. Regarding the requirement
(b), when m,m′ ∈ E0,m 6= m′, we immediately have σUmm = σVm′m′ = 1 by the unit variance
assumption. Since every element in E0 comes from a different component CU` (CV` ), we also have
σUmm′ = σVmm′ = 0 when m,m′ ∈ E0,m 6= m′. Lastly, due to the same reason, we have ∀k ∈ [d],
|{m ∈ E0 : |σUkm|+ |σVkm| 6= 0}| ≤ 2. Hence the requirement (c) is also satisfied.

Now we prove Theorem B.4, which is stated below. Note that it requires weaker connectivity
assumption compared with Theorem 3.2 but needs to assume minimal eigenvalue conditions.

Theorem B.4 (CCB with elementwise `0 norm difference). Consider the two Gaussian random
vectors U and V to have equal variances σUjj = σVjj = O(1), for j ∈ [d] and we assume λmin(ΣU ) ≥
1/b0 > 0, λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0. Suppose U and V also satisfy Assumption
B.3, we then have

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ = O

(
∆0 log d

p

)
. (B.11)

for some constant C0 > 0.

Proof of Theorem B.4. Following the same derivations as in Theorem B.2, we have

|P(||U ||∞ > t)− P(||V ||∞ > t)|
≤ M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε)P(||V ||∞ > t) + max

j=1,2
|E[ϕj(U)]− E[ϕj(V )]|

≤ M1 log d(t+ 1)ε exp(M2 log2 d(t+ 1)ε)P(||V ||∞ > t) +

∣∣∣∣∫ 1

0
Ψ′t(s)ds

∣∣∣∣ , (B.12)
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where ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, and the constants
M1,M2 only depend on min1≤j≤d{σUjj}, max1≤j≤d{σUjj}. The above two inequalities hold by (B.3),

(B.4) and (B.5). We further bound
∣∣∣∫ 1

0 Ψ′t(s)ds
∣∣∣ as below,∣∣∣∣∫ 1

0
Ψ′t(s)ds

∣∣∣∣
≤ 1

2

d∑
j,k=1

|σUjk − σVjk|
∣∣∣∣∫ 1

0
E[∂j∂kϕ(W (s))]ds

∣∣∣∣
≤ M

2

∑
j 6=k,σUjk 6=σ

V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))|]ds

≤ M

2

∑
j 6=k,σUjk 6=σ

V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds

≤ M∆0

2
max

j 6=k,σUjk 6=σ
V
jk

∫ 1

0
E[|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)]ds, (B.13)

where the first inequality holds due to (B.6), the second inequality is because σUjk = O(1), σVjk = O(1)
for all j, k and the constant M only depends on the maximal variances of the elements of U, V , the
third inequality holds by the property (b) in Lemma B.1 for ϕj(x), j = 1, 2, and the last inequality
holds by the definition of ∆0. Note that ϕ1(x) := ϕt,ε(x), ϕ2(x) := ϕt−ε,ε(x) as defined in the
proof of Theorem B.2. We use the same strategy to deal with ϕ1(x) and ϕ2(x). Below we give the
derivations when ϕ = ϕ1(x) and it is not hard to check these derivations work for ϕ2(x) as well.
Recall the explicit construction of ϕ : Rd → R introduced in Remark B.1,

ϕ(x) = ϕr,ε(x) = g0

(
2(Fβ(zx − r12d)− ε/2)

ε

)
,

where β = 2 log(2d)/ε, g0(t) := 301(0 ≤ t ≤ 1)
∫ 1
t s

2(1 − s)2ds + 1(t ≤ 0), Fβ is the “softmax”
function

Fβ(z) :=
1

β
log
( 2d∑
m=1

exp (βzm)
)

for z ∈ R2d,

zx = (x>,−x>)> and 12d is the vector of 1’s of dimension 2d.
To bound (B.13), we consider the case where j 6= k and σUjk 6= σVjk. Note that

|∂j∂kϕ(W (s))| ≤ ||g′′||∞|π̃j(Z)π̃k(Z)|+ β||g′||∞|π̃j(Z)π̃k(Z)|, (B.14)

where g(t) := g0(2(t−ε/2)
ε ), Z := W (s) and

π̃j(z) :=
eβzj − e−βzj∑d

m=1 e
βzm +

∑d
m=1 e

−βzm
.

The above result follows from a direct calculation. Due to the boundedness of ||g′0||∞, ||g′′0 ||∞ and
β = 2 log(2d)/ε, we obtain the following bound on (B.14),

|∂j∂kϕ(W (s))| ≤ (||g′′||∞ + β||g′||∞)|π̃j(Z)π̃k(Z)|

≤
( 4

ε2
||g′′0 ||∞ +

2β

ε
||g′0||∞

)
|π̃j(Z)π̃k(Z)|

≤ C1 log(2d)

ε2
|π̃j(Z)π̃k(Z)| ≤ C1 log(2d)

ε2
|πj(Z)πk(Z)|,
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for some constant C1, where πj(z) = eβ|zj |/
∑d

m=1 e
β|zm|. Recalling Z = W (s), we have∫ 1

0
E [|∂j∂kϕ(W (s))| · 1(t− ε ≤ ||W (s)||∞ ≤ t+ ε)] ds

≤ C1 log(2d)

ε2

∫ 1

0
E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]ds

=
C1 log(2d)

ε2
P(||V ||∞ > t)

∫ 1

0

E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)︸ ︷︷ ︸
II(s)

ds. (B.15)

Below we focus on bounding the term II(s) for any s ∈ [0, 1]. First we rewrite πj(Z)πk(Z) and
simply derive the following inequality,

πj(Z)πk(Z) =
eβ|Zj |∑d

m=1 e
β|Zm|

· eβ|Zk|∑d
m=1 e

β|Zm|

=
e−β(||Z||∞−|Zj |) · e−β(||Z||∞−|Zk|)

(1 +
∑
|Zm|6=||Z||∞ e

−β(||Z||∞−|Zm|))2

≤ e−β(||Z||∞−|Zj |) · e−β(||Z||∞−|Zk|), (B.16)

where the second equality comes from dividing both the numerator and denominator by e2β||Z||∞

in the first line. Note that P(|Zj | = |Zk|) = 0 since the random vector Z follows a non-degenerate
d-dimensional multivariate Gaussian distribution. Hence we have

1 = 1(|Zj | = ||Z||∞, |Zk| < ||Z||∞) + 1(|Zj | < ||Z||∞), almost surely. (B.17)

Plugging the equality (B.17) into (B.16), we can further bound πj(Z)πk(Z) as

πj(Z)πk(Z) ≤ e−β(||Z||∞−|Zk|) · 1(|Zk| < ||Z||∞) + e−β(||Z||∞−|Zj |) · 1(|Zj | < ||Z||∞), almost surely.

Then we can bound II(s) by

II(s) =
E [πj(Z)πk(Z) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)

≤ E[e−β(||Z||∞−|Zk|) · 1(|Zk| < ||Z||∞)1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)
(B.18)

+
E[e−β(||Z||∞−|Zj |) · 1(|Zj | < ||Z||∞)1(t− ε ≤ ||Z||∞ ≤ t+ ε)]

P(||V ||∞ > t)
. (B.19)

We use the same strategy to bound (B.18) and (B.19). Below we give the derivations for
bounding (B.19) and note these also work for (B.18).

For any j 6= k and σUjk 6= σVjk, Assumption B.3 says that there exists a subset E0 ⊂ [d] satisfying

j ∈ E0, |E0| = p + 1, and σUmm = σUm′m′ , σ
U
mm′ = σVmm′ = 0 when m,m′ ∈ E0,m 6= m′. This implies

the following: when s = 0 or 1 (i.e., Z = U or V ), we can find a p−dimensional random vector
G such that (Zj , G) are all independent and Var(G`) = Var(Zj) = σ2

j for ` ∈ [p]. Note that G
is constructed as (Zm)m∈E0,m 6=j with E0 being the same for Z = U and V . Therefore, for any
s ∈ (0, 1), Z = W (s) =

√
sU +

√
1− sV , we can construct G = (Zm)m∈E0,m 6=j such that (Zj , G)

are all independent and Var(G`) = Var(Zj) = σ2
j for ` ∈ [p]. Throughout the following proof

and the lemmas in Appendix B.3, we will use the notation Z,G without making the dependence
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on s explicitly. And we denote the indices of the random variables in G (among Z) by EG, i.e.,
EG = E0 \ {j} = {m ∈ [d] : Zm = G` for some ` ∈ [p]}.

We will consider two separate cases based on whether ||G||∞ = ||Z||∞ holds. Formally, we write
1(|Zj | < ||Z||∞) ≤ 1(E1) + 1(E2) with E1 and E2 defined as

E1 := {||Z||∞ > ||G||∞, ||Z||∞ > |Zj |}, (B.20)

E2 := {||G||∞ = ||Z||∞ > |Zj |}. (B.21)

Then the numerator of the fraction in (B.19) can be bounded by the summation of the following
two terms:

II1 := E
[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
,

II2 := E
[
e−β(||Z||∞−|Zj |) · 1(E2) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
.

(B.22)

Combining (B.19) with (B.22) and applying Lemmas B.5 and B.6, we have

II(s) ≤ 2(II1 + II2)

P(||V ||∞ > t)
≤ C ′ε log d

βp
, ∀s ∈ [0, 1], (B.23)

for some constant C ′. By (B.12), (B.13), (B.15) and (B.23), we thus obtain the following inequality

|P(||U ||∞ > t)− P(||V ||∞ > t)|

≤ A(t, ε)P(||V ||∞ > t) +
C1M∆0 log(2d)

2ε2
P(||V ||∞ > t) · C

′ε log d

βp

= P(||V ||∞ > t) (A(t, ε) +B(∆0, p)) , (B.24)

where A(t, ε) := M1 log d(t + 1)ε exp(M2 log2 d(t + 1)ε), B(∆0, p) := C ′′(log d/p)∆0 for some con-

stants M1,M2, C
′′. In the last line, we also subsitute β = 2 log(2d)

ε . By re-arranging (B.24), we
finally have ∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ A(t, ε) +B(∆0, p).

Since 0 ≤ t ≤ C0
√

log d and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0,
we have A(t, ε) = O(B(∆0, p)). Then (B.11) can be established, i.e.,

sup
0≤t≤C0

√
log d

∣∣∣∣P(||U ||∞ > t)

P(||V ||∞ > t)
− 1

∣∣∣∣ ≤ C ′′′B(∆0, p) = O

(
∆0 log d

p

)
.

Now we prove Theorem 3.2 using similar strategies as in Theorem B.4. Recall that the con-
nectivity assumption in Theorem 3.2 assumes that there exists a disjoint p-partition of nodes
∪p`=1C` = [d] such that σUjk = σVjk = 0 when j ∈ C` and k ∈ C`′ for some ` 6= `′. Since this con-
nectivity assumption is stronger than that in Theorem B.4, we are able to do slightly more careful
analysis in Lemma B.5. As a result, the minimal eigenvalue condition is no longer needed. Also
note that Theorem 3.2 assumes the unit variance condition and there exists some σ0 < 1 such that
|σVjk| ≤ σ0, |σUjk| ≤ σ0 for any j 6= k. Both the variance condition and the covariance condition
can be relaxed. In the following proof, we establish the Cramér-type comparison bound under
a general variance condition. This general version is actually used in the proof of Theorem 5.2.
Specifically, the general variance condition says that a0 ≤ σUjj = σVjj ≤ a1, ∀j ∈ [d]. After relaxing
the unit variance assumption, some balanced variance assumption on the above components C` is
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required. It says that given any j ∈ C` with some `, there exists at least one m ∈ C`′ such that
σUjj = σVjj = σUmm = σVmm for any `′ 6= `. Remark this condition is mainly needed for Lemma
B.12. We will call all these assumptions about variances as general variance condition. Denote

σ̃Ujk = σUjk/
√
σUjjσ

U
kk. Accordingly, the covariance condition on σjk in Theorem 3.2 can also be

relaxed into the following: there exists some σ0 < 1 such that |σ̃Vjk| = |σVjk|/
√
σVjjσ

V
kk ≤ σ0 for any

j 6= k and |{(j, k) : j 6= k, |σ̃Ujk| = |σUjk|/
√
σUjjσ

U
kk > σ0}| ≤ b0 for some constant b0. We will call this

condition as general covariance condition.

Proof of Theorem 3.2. Following exactly the same derivations in Theorem B.4 (up to (B.22)), we
arrive at the following

II(s) ≤ 2(II1 + II2)

P(||V ||∞ > t)
,

where II(s), II1, II2 are defined in (B.15) and (B.22), except that the random vector G can be
constructed to satisfy more properties. Assuming the connectivity assumption of Theorem 3.2 and
the general variance condition, we construct G by choosing one random variable Zm from each
component (except the one to which Zj belongs) satisfying Var (Zm) = σUmm = σVmm = σUjj = σVjj =
Var (Zj). Such construction still satisfies the mentioned properties in Theorem B.4. Specifically,
(G,Zj) consists of (p + 1) i.i.d. Gaussian random variables. Moreover, for any k 6= j, k /∈ EG =
{m ∈ [d] : Zm = G` for some ` ∈ [p]}, there exists at most one m ∈ {j} ∪ EG, such that Zk and Zm
belong to the same component. Based on this property, we prove Lemma B.12 and Lemma B.13,
which do not require minimal eigenvalue conditions compared with Lemma B.5 and Lemma B.7.
We still apply Lemma B.13 to bound the term II2. Regarding the term II1, we control it by using
Lemma B.6. Therefore, we obtain the following

II(s) ≤ C ′ε log d

βp

(
1 +

b0√
1− (s+ (1− s)σ0)2

)
. (B.25)

Note a simple calculus result:∫ 1

0

b0√
1− (s+ (1− s)σ0)2

≤ 0.5πb0
1− σ0

< C ′′

for some constant C ′′ when σ0 < 1. Combining the above bound with (B.25), (B.12), (B.13), (B.15)
and (B.23), we establish the bound (3.2) thus prove Theorem 3.2.

B.3 Ancillary lemmas for Theorem B.4

Throughout the lemmas in this section, we will use Z and G without making the dependence on s
explicitly, as mentioned in the proof of Theorem B.4.

Lemma B.5. Suppose λmin(ΣU ) ≥ 1/b0 > 0, λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0.
For the term II1 = E

[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
with E1 defined in (B.20)

and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, whenever t satisfies
0 ≤ t ≤ C0

√
log d for some constant C0 > 0, we have

II1

P(||V ||∞ > t)
≤ C ′ε log d

βp
. (B.26)
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Proof of Lemma B.5. We will bound II1 by the law of total expectation. Specifically, we first
calculate the conditional expectation given (G,Zj) then take expectation with respect to (G,Zj).
Denoting the conditional density function of ||Z||∞ | Zj = zj , G = g by fg,zj (u), we write out the
integral form of II1 as

II1 = E
[
e−β(||Z||∞−|Zj |) · 1(||Z||∞ > ||G||∞, ||Z||∞ > Zj) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
= E

[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
fG,Zj (u)e−βu1(u > ||G||∞, u > |Zj |)du

)]
≤ E

[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
C
√

log d · e−βu1(u > |Zj |)du
)]

≤ C
√

log d P(||G||∞ ≤ t+ ε)E

[∫
|zj |≤t+ε

φ

(
zj
σj

)
eβ|zj |

(∫ t+ε

t−ε
e−βu1(u > |zj |)du

)
dzj

]

≤ C
√

log d P(||G||∞ ≤ t+ ε)

∫
|zj |≤t+ε

φ

(
zj
σj

)
eβ|zj |

(∫ t+ε

t−ε
e−βu1(u > |zj |)du

)
dzj︸ ︷︷ ︸

III

, (B.27)

where the first inequality holds since 1(u > ||G||∞, |Zj |) ≤ 1(u > |Zj |) and the conditional density
function fg,zj (u) is bounded by C

√
log d when ||g||∞, |zj | < u ≤ t + ε and 0 ≤ t ≤ C0

√
log d, as a

result of Lemma B.7. Recall that φ(·) denotes the standard Gaussian PDF. We use the fact that
Zj ⊥⊥ G, Zj ∼ N (0, σ2

j ) and write out the integral form of the expectation with respect to Zj , thus
the second inequality follows. Then the integral III can be further rewritten as

III = 2

∫ t+ε

t−ε
e−βu

(∫ u

0
φ

(
x

σj

)
eβxdx

)
du

= 2

∫ t+ε

t−ε
e−βu

(
e
β2σ2j

2

∫ u

0
φ

(
x

σj
− βσj

)
dx

)
du

= 2

∫ t+ε

t−ε
e−βu

(
e
β2σ2j

2

∫ u/σj−βσj

−βσj
φ (x) dx

)
du

≤ 2

∫ t+ε

t−ε
e−βu

(
e
β2σ2j

2 Φ̄
(
βσj − u/σj

))
du

≤ 2

∫ t+ε

t−ε
e−βu

eβ2σ2j2
e−

(βσj−u/σj)
2

2

βσj − u/σj

 du

≤ 4

βσj

∫ t+ε

t−ε
e−βu

(
eβue

− u
2σj

)
du ≤ 8ε

βσj
exp

(
−(t− ε)2

2σ2
j

)
, (B.28)

where the first equality holds by Fubini’s theorem, and the second equality holds by the definition
of φ(·). Regarding the first inequality, we use the fact that u/σj − βσj < 2u/σj − βσj < 0 for

u ≤ t+ ε and t ≤ C0
√

log d. This is because β = 2 log(2d)
ε and ε = c/max{(log d)3/2, p log d} for some

small enough constant c > 0. Then
∫ u/σj−βσj
−βσj φ (x) dx ≤ Φ̄(βσj −u/σj), recalling Φ̄ = 1−Φ, where

Φ is the standard Gaussian CDF. The second inequality holds as a result of Lemma B.8. The third
inequality holds due to βσj > 2u/σj for u ≤ t+ ε.
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By (B.27) and (B.28), we arrive at the following bound

II1

P(||V ||∞ > t)
≤ C

√
log d · P(||G||∞ ≤ t+ ε)

P(||V ||∞ > t)
· 8ε

βσj
exp

(
−(t− ε)2

2σ2
j

)

≤ C
√

log d · C1ε

β
· P(||G||∞ ≤ t+ ε)

P(||G||∞ > t)
· φ
( t− ε
σj

)
/σj

= C
√

log d · C1ε

β
·

(1− 2Φ̄( t+εσj ))p

1− (1− 2Φ̄
(
t
σj

)
)p · φ( t− εσj

)
/σj︸ ︷︷ ︸

Λ(t,ε,p)

,

for some constants C,C1, where the second inequality holds due to the definition of φ(z) and
P(||V ||∞ > t) ≥ P(||G||∞ > t). This is because

P(||V ||∞ > t) ≥ P(max
k∈EG

|Vk| > t) = P(||GV ||∞ > t) = P(||G||∞ > t), (B.29)

where GV = (Zm)m∈E0,m 6=j with Z = V has the same distribution as G. Regarding the last line, by
the construction of G = (G`)`∈[p] = (Zm)m∈E0,m6=j in the proof of Theorem B.4, we have {G`}`∈[p]

are p i.i.d. Gaussian random variables with Var (G`) = Var (Zj) = σ2
j . By applying Lemma B.9 to

the term Λ(t, ε, p) in the last line, we further obtain,

II1

P(||V ||∞ > t)
≤ C ′

√
log d · ε

β

√
log d

p
=
C ′ε log d

βp
,

for some constant C ′, therefore (B.26) is established.

Lemma B.6. For the term II2 = E
[
e−β(||Z||∞−|Zj |) · 1(E2) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
with E2

defined in (B.21) and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, whenever
t satisfies 0 ≤ t ≤ C0

√
log d for some constant C0 > 0, we have

II2

P(||V ||∞ > t)
≤ C ′′ε

√
log d

βp
. (B.30)

Proof of Lemma B.6. By the definition of E2 in (B.21) and the tower property, we have

II2 = E
[
e−β(||Z||∞−|Zj |) · 1(||G||∞ = ||Z||∞ > |Zj |) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
= E

[
e−β(||G||∞−|Zj |) · 1(||G||∞ = ||Z||∞, ||G||∞ > |Zj |) · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
≤ E

[
e−β(||G||∞−|Zj |) · 1(||G||∞ > |Zj |) · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
= E

[
E
[
eβ|Zj |1(|Zj | < ||G||∞) |G

]
e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
. (B.31)
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First we bound III(g) := E
[
eβ|Zj |1(|Zj | < ||G||∞) |G = g

]
when ||g||∞ ∈ [t− ε, t+ ε]. Specifically,

III(g) =
2

σj

∫ ||g||∞
0

eβxφ
( x
σj

)
dx =

2eβ
2σ2
j /2

σj

∫ ||g||∞
0

φ
(x− βσ2

j

σj

)
dx

≤ 2eβ
2σ2
j /2
∫ ||g||∞/σj−βσj
−∞

φ(y)dy

= 2eβ
2σ2
j /2 Φ̄(βσj − ||g||∞/σj)

≤ 2eβ
2σ2
j /2

φ (βσj − ||g||∞/σj)
βσj − ||g||∞/σj

≤ 4

βσj
φ

(
||g||∞
σj

)
eβ||g||∞ , (B.32)

where the first equality holds due to Zj ⊥⊥ G, and the second equality comes from rearranging.
The first inequality holds by the change of variable y = (x− βσ2

j )/σj and setting the lower limit of

the integral as −∞. Because β = 2 log(2d)
ε and ε = c/max{(log d)3/2, p log d} for some small enough

constant c > 0, we have ||g||∞/σj < βσj for ||g||∞ ≤ t + ε and t ≤ C0
√

log d. Then the second
inequality holds as a result of Lemma B.8 and the fact that βσj−||g||∞/σj > 0. The last inequality
comes from rearranging and the fact that βσj > 2||g||∞/σj for ||g||∞ ≤ t + ε and t ≤ C0

√
log d.

Combining (B.32) with (B.31), we have

II2 ≤ E
[
III(G) · e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
≤ 4

βσj
E
[
φ
( ||G||∞

σj

)
eβ(||G||∞) · e−β||G||∞ · 1(t− ε ≤ ||G||∞ ≤ t+ ε)

]
≤ 4

βσj

∫ t+ε

t−ε
φ
( y
σj

)
f(y)dy, (B.33)

where f(y) denotes the PDF of ||G||∞. As {G`}`∈[p] are i.i.d. Gaussian random variables satisfying
∀ ` ∈ [p], E [G`] = 0 and Var (G`) = σ2

j , we have for y > 0,

P(||G||∞ ≤ y) = P(
⋃
`∈[p]

|G`| ≤ y) = (1− 2P(G`/σj > y/σj))
p = (1− 2Φ̄(y/σj))

p. (B.34)

Thus we have the PDF of ||G||∞ equals f(y) = 2p
σj

(
1− 2Φ̄( yσj ))p

) p−1
p
φ( yσj ). Plugging the expression

of f(y) into (B.33), we further derive the following bound

II2

P(||V ||∞ > t)
≤ 8p

βσ2
j

∫ t+ε

t−ε

(
1− 2Φ̄( yσj ))p

) p−1
p
φ2( yσj )

P(||V ||∞ > t)
dy

≤ 8p

βσ2
j

∫ t+ε

t−ε

(
1− 2Φ̄( yσj ))p

) p−1
p
φ2( yσj )

1− P(||G||∞ ≤ t)
dy

=
8p

βσ2
j

∫ t+ε

t−ε

(
(1− 2Φ̄( yσj ))p

) p−1
p
φ2( yσj )

1− (1− 2Φ̄( t
σj

))p
dy

≤ 16ε

βσ2
j p

(
(1− 2Φ̄( t+εσj ))p

) p−1
p

(pφ( t−εσj ))2

1− (1− 2Φ̄( t+εσj ))p
≤ C ′′ε

√
log d

βp
,
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for some constant C ′, where the second inequality holds due to (B.29), as mentioned in the proof
of Lemma B.5. The equality holds as a result of substituting the expression of P(||G||∞ ≤ t)
by (B.34). The third inequality holds since 1 − 2Φ̄(z) is monotonically increasing and φ(z) is
monotonically decreasing when z ≥ 0. As for the last line, we apply Lemma B.10. Finally, (B.30)
is established.

Lemma B.7. Suppose λmin(ΣU ) ≥ 1/b0 > 0, λmin(ΣV ) ≥ 1/b0 > 0 for some constant b0 > 0.
Recall that the density function of the conditional distribution of ||Z||∞ | {Zj = zj , G = g} is
denoted by fg,zj (z). Suppose ε > 0, when 0 ≤ t ≤ C0

√
log d for some constant C0 > 0 and

|zj |, ||g||∞ ≤ t+ ε, we have

fg,zj (z) ≤ C
√

log d, ∀ z ∈ (max{|zj |, ||g||∞}, t+ ε].

Proof of Lemma B.7. First we introduce some new notations. Let (σjk)1≤j,k≤d ∈ Rd×d be the
covariance matrix of Z. For given j, we denote

σkk·j := σkk − σ2
kjσ
−1
jj −

∑
m∈EG

σ2
kmσ

−1
mm. (B.35)

As z ∈ (max{|zj |, ||g||∞}, t+ε], we can choose δ such that 0 < δ < z−max{|zj |, ||g||∞}. Throughout
the following proof, we will work with such δ. Since max{|zj |, ||g||∞} − z < −δ, we have

P
(∣∣||Z||∞ − z∣∣ ≤ δ |Zj = zj , G = g

)
= P

(∣∣||X||∞ − z∣∣ ≤ δ |Zj = zj , G = g
)
, (B.36)

where X denotes the (d−p−1)-dimensional random vector by excluding Zj , G from Z and therefore
||Z||∞ = max{||X||∞, |Zj |, ||G||∞}.

Recalling G = (G`)`∈[p] = (Zm)m∈EG , where EG denotes the indices of the random variables in
G (among Z), i.e., EG = {m ∈ [d] : Zm = G` for some ` ∈ [p]}, we have

||X||∞ = max
k∈[d], k /∈{j,EG}

{max{Zk,−Zk}}.

Given j and the choice of G, we also denote

σ·j := min
k∈[d],k /∈{j,EG}

√
σkk·j , ρ̄j := max

k∈[d],k /∈{j,EG}

|σjk|
σjj

. (B.37)

For each k ∈ [d], k /∈ {j, EG}, the conditional expectation E [Zk |Zj , G] has the following expression,

E [Zk |Zj , G] = σkjσ
−1
jj Zj +

∑
m∈EG

(σkmσ
−1
mmZm), (B.38)

since (Zj , G) are all independent. Note that the requirement (c) in Assumption B.3 says ∀ k ∈ [d],
|{m ∈ E0 : |σUkm|+ |σVkm| 6= 0}| ≤ c0, we thus have∑

m∈EG

1(σkm 6= 0) =
∑
m∈EG

1((sσUkm + (1− s)σVkm) 6= 0)

≤
∑
m∈EG

1(σUkm 6= 0 or σVkm 6= 0) ≤ c0, (B.39)
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where the first equality holds by the definition of σkm and Z = W (s) =
√
sU+

√
1− sV . Combining

(B.39) with (B.38), it yields the following bound on |E [Zk |Zj = zj , G = g] |,

|E [Zk |Zj = zj , G = g] | =
∣∣σkjσ−1

jj zj +
∑
m∈EG

(σkmσ
−1
mmzm)

∣∣
≤ ρ̄j(|zj |+ c0||g||∞), (B.40)

where ρ̄j = maxk∈EX
|σjk|
σjj

as defined. Denoting EX := {k : k ∈ [d], k /∈ {j, EG}}, we define the

following random variables,

W̃2k−1 =
Zk − z√
σkk·j

+
z̃

σ·j
, W̃2k =

−Zk − z√
σkk·j

+
z̃

σ·j
, k ∈ EX , (B.41)

where z̃ = z + ρ̄j(|zj |+ c0||g||∞). Then by the definitions of σkk·j , σ·j and ρ̄j in (B.35) and (B.37),
we have the above random variables satisfy the following properties,

E
[
W̃m |Zj = zj , G = g

]
≥ 0, Var

(
W̃m |Zj = zj , G = g

)
= 1,

where m = 2k − 1 or 2k and k ∈ EX . Denote those random variables defined in (B.41) by {W̃m}
for notation simplicity. We let qzj ,g(w) be the PDF of the conditional distribution of maxm{W̃m} |
Zj = zj , G = g. Then we will apply the derivation of Step 2 in Theorem 3 of Chernozhukov et al.
(2015) to bound qzj ,g(w). Note that for the following derivations, we always conditional on the event

Zj = zj , G = g. First, we verify the condition on {W̃m}. Since |Corr(Uj , Uk)| 6= 1, |Corr(Vj , Vk)| 6= 1

for distinct j, k ∈ [d], we then have the correlation between W̃m1 and W̃m2 for m1 6= m2 is less than
1. Therefore, by applying the derivation of Step 2 in Theorem 3 of Chernozhukov et al. (2015) to

{W̃m}, we have

qzj ,g(w) ≤ h(w) := 2(w ∨ 1) exp

{
−

(w − w̄ − ad)2
+

2

}
,

where w̄ = maxm E
[
W̃m |Zj = zj , G = g

]
and

ad = max
m

E
[(
W̃m − E

[
W̃m |Zj = zj , G = g

] )
|Zj = zj , G = g

]
.

When w ≤ w̄+ad, we have h(w) ≤ 2(w̄+ad). To deal with the case where w > w̄+ad, we consider

log(h(w)) = log(2w)− (w − w̄ − ad)2

2
,

d log(h(w))

dw
=

1

w
− (w − w̄ − ad),

d2 log(h(w))

dw2
= − 1

w2
− 1 < 0.

Solving d
dw log(h(w)) = 0 yields w? =

w̄+ad+
√

(w̄+ad)2+4

2 . Therefore, the PDF of the conditional

distribution of maxm{W̃m} | Zj = zj , G = g can be bounded by

h(w) ≤ h(w?) ≤ 3(w̄ + ad). (B.42)
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Now we have

P
(∣∣||Z||∞ − z∣∣ ≤ δ |Zj = zj , G = g

)
= P (|||X||∞ − z| ≤ δ |Zj = zj , G = g)

= P
(∣∣∣∣max

k∈EX
{Zk,−Zk} − z

∣∣∣∣ ≤ δ |Zj = zj , G = g

)
≤ P

(∣∣∣∣max
k∈EX

{
Zk − z√
σkk·j

,
−Zk − z√
σkk·j

}∣∣∣∣ ≤ δ

σ·j
|Zj = zj , G = g

)

≤ sup
y∈R

P

(∣∣∣∣∣max
k∈EX

{
Zk − z√
σkk·j

+
z̃

σ·j
,
−Zk − z√
σkk·j

+
z̃

σ·j

}
− y

∣∣∣∣∣ ≤ δ

σ·j
|Zj = zj , G = g

)

= sup
y∈R

P

(∣∣∣max
m
{W̃m} − y

∣∣∣ ≤ δ

σ·j
|Zj = zj , G = g

)
≤ 6δ

σ·j
(w̄ + ad), (B.43)

where the first equality holds by (B.36), the second equality holds by the definition of X and EX ,
the first inequality holds since σ·j = mink 6=j

√
σkk·j , the third equality holds by the definition of

{W̃m} in (B.41), and the last inequality holds by the bound on h(w) in (B.42). Regarding the

quantity w̄ = maxm E
[
W̃m |Zj = zj , G = g

]
, we have

w̄ = max
k∈EX

{
±E [Zk |Zj = zj , G = g]− z

√
σkk·j

+
z̃

σ·j

}

≤ max
k∈EX

{
±E [Zk |Zj = zj , G = g]

√
σkk·j

}
+ max
k∈EX

{
1

σ·j
− 1
√
σkk·j

}
z +

ρ̄j(|zj |+ c0||g||∞)

σ·j

≤ max
k∈EX

{
±
(
σkjσ

−1
jj zj +

∑
m∈EG(σkmσ

−1
mmzm)

)
√
σkk·j

}
+

z

σ·j
+
ρ̄j(|zj |+ c0||g||∞)

σ·j

≤ 2ρ̄j(|zj |+ c0||g||∞)

σ·j
+

z

σ·j
≤ 2ρ̄j(1 + c0) + 1

σ·j
(t+ ε), (B.44)

where max{±A} := max{A,−A}, the first inequality holds by the definition of z̃, the second
inequality holds by (B.38), and the last inequality holds by the definitions of ρ̄j and σ·j and the

fact
∑

m∈EG 1(σkm 6= 0) ≤ c0.
Let δ in (B.43) go to 0, we get the following bound on the density function of the conditional

distribution of ||Z||∞ | {Zj = zj , G = g}, i.e., when 0 ≤ t ≤ C0
√

log d and |zj |, ||g||∞ ≤ t+ ε,

fg,zj (z) ≤
6

σ·j
(w̄ + ad) ≤

6

σ·j

(
2ρ̄j(1 + c0) + 1

σ·j
C1

√
log d+ C2

√
log d

)
, (B.45)

for any z ∈ (max{|zj |, ||g||∞}, t + ε]. The first inequality holds by (B.43). Regarding the second
inequality, we apply the result in (B.44) and bound (t + ε) and ad by C1

√
log d for some constant

C1. Note ad ≤ C1
√

log d is because of the maximal inequalities for sub-Gaussian random variables

(Lemma 5.2 in van Handel (2014)). As for ρ̄j = maxk∈EX
|σjk|
σjj

, we have

ρ̄2
j ≤ max

k 6=j

σkk
σjj
≤

maxj σ
U
jj

minj σUjj
≤

maxj σ
U
jj

λmin(ΣU )
= O(1),
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where the first inequality holds by the Cauchy-Schwarz inequality, the second inequality holds by
the definition of Z and σUjj = σVjj , the third inequality holds by the fact that minj σ

U
jj ≥ λmin(ΣU ),

and the last step holds under the stated assumption of Theorem B.4. As for σ·j = mink∈EX
√
σkk·j

where σkk·j = σkk − σ2
kjσ
−1
jj −

∑
m∈EG σ

2
kmσ

−1
mm = Var (Zk |Zj , G), we have

1

σ2
·j

=
1

mink∈EX Var (Zk |Zj , G)

≤ 1

mink Var (Zk |Z-k)

= max
k

((ΣZ)−1)kk

≤ λmax((ΣZ)−1)

= 1/λmin(ΣZ)

≤ (min{λmin(ΣU ), λmin(ΣV })−1 ≤ b0,

under the stated assumption that λmin(ΣU ) ≥ 1/b0, λmin(ΣV ) ≥ 1/b0, where the first inequality
holds since (Zj , G) is a sub-vector of Z-k := Z(1:d)\k, the second equality holds by the relationship
between the partial variances and the inverse covariance matrix, and the last three hold by the
definitions of λmin(·), λmax(·). Thus we have fg,zj (z) ≤ C

√
log d for some constant C, i.e., Lemma

B.7 is proved.

Lemma B.8. For z > 0, we have

φ(z)

2(z ∨ 1)
≤ Φ̄(z) = 1− Φ(z) ≤ φ(z)

z
,

where φ(z),Φ(z) is the PDF and CDF of the standard Gaussian distribution respectively.

Proof of Lemma B.8. This is a simple fact derived from Mill’s inequality; see the derivations in the
proof of Theorem 3 in Chernozhukov et al. (2015).

Lemma B.9. Whenever 0 ≤ t ≤ C0
√

log d for some constant C0 > 0, and ε = c/max{(log d)3/2, p log d}
for some small enough constant c > 0, we have

Λ(t, ε, p) :=
(1− 2Φ̄( t+εσj ))p

1− (1− 2Φ̄( t
σj

))p
· φ
( t− ε
σj

)
= O

(√
log d

p

)
. (B.46)

Proof of Lemma B.9. By Lemma B.8, we can simplify Λ(t, ε, p) into the following

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj
∨1

)p

1−
(

1−
φ( t
σj

)

t
σ
∨1

)p · φ
( t− ε
σj

)
.

When t
σj
≤ 1, we have t+ε

σj
≤ 2 due to the choice of ε. Because t

σj
> 0, t+εσj > 0 and φ(z) is

monotonically decreasing when z > 0, we then have the the bound below,

Λ(t, ε, p) ≤ (1− φ(2)/2)p

1− (1− φ(1))p
= O

(√
log d

p

)
,

58



where the second inequality holds due to 0 < φ(2) < φ(1) < 0.5 and p > 1. Now it suffices to
consider the case where t+ε

σj
> t

σj
> 1 and deal with the following

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(

1−
φ( t+ε

σj
)

t+ε
σj

)p · φ
(
t− ε
σj

)
.

We further bound Λ(t, ε, p) as

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(

1−
φ( t+ε

σj
)

t+ε
σj

)p · φ
( t+ ε

σj

)
· e

tε

2σ2
j

≤ 2

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−

(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)

:= 2eH(λ) · t+ ε

pσj

where the first inequality comes from rearranging, the second inequality holds since exp ( tε
2σ2
j
) < 2

for t ≤ C0
√

log d. This is because ε = c/max{(log d)3/2, p log d} for some small enough constant

c > 0. The last line holds by rewriting using some new notations: λ := p
φ( t+ε

σj
)

t+ε
σj

and

H(λ) := log

(
(1− λ

p )p

1− (1− λ
p )p
· λ

)
= p log

(
1− λ

p

)
− log

(
1− (1− λ

p
)p
)

+ log λ. (B.47)

Since t+ε
σj

> 1, we have 0 < λ < p. Below we will first deal with H(λ) then obtain the bound on

Λ(t, ε, p). To bound H(λ), consider taking the derivative of H(λ) with respect to λ, then we have

H ′(λ) =
p

λ− p
−

(1− λ
p )(p−1)

1− (1− λ
p )p

+
1

λ

=
p

λ− p
− 1

1− λ
p

·
(1− λ

p )p

1− (1− λ
p )p

+
1

λ

≤ p

λ− p
− 1

1− λ
p

· 1− λ
1− (1− λ)

+
1

λ

=
p

λ− p
+

1

1− λ
p

− 1

λ
· 1

1− λ
p

+
1

λ

≤ 1

λ

(
1− p

p− λ

)
< 0,

where the first inequality holds by the Bernoulli’s inequality: (1 + x)r ≥ 1 + rx when r ∈ N, 1+x ≥
0, and the last inequality holds since 0 < λ < p. Now we have H(λ) is monotone decreasing. When
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0 ≤ t ≤ C0
√

log d, we will first find the lower bound on λ = p
φ( t+ε

σj
)

t+ε
σj

, denoted by λ. Then we have

H(λ) is bounded by H(λ) due to its monotonicity. Regarding λ, we denote x̄ := 2C0
√

log d/σj and

note φ(x)
x is monotone decreasing when x ≥ 0. Then we have, when 0 ≤ t ≤ C0

√
log d,

p
φ( t+εσj )

t+ε
σj

≥ p
φ(x̄)

x̄
≥ p

da1
:= λ,

where a1 > 2. Therefore we obtain

H(λ) ≤ H(λ) = log

(
(1− λ

p )p

1− (1− λ
p )p
· λ

)∣∣∣∣∣
λ=λ

≤ log

 λ

1− (1− pλp + (p−1)p
2

λ2

p2
)

∣∣∣∣∣∣
λ=λ

≤ C ′, (B.48)

where the second inequality holds due to the fact that (1 − λ
p )p ≤ 1, λ

p ∈ [0, 1] and Lemma B.11.

The third inequality holds since λ = p
da1 ≤

1
da1−1 <

1
d , then we have λ

1− (1− pλp + (p−1)p
2

λ2

p2
)

∣∣∣∣∣∣
λ=λ

=
λ

λ− 2(p−1)
p λ2

≤ λ

λ− 2λ2 =
1

1− 2λ
≤ C ′1,

for some constant C ′1. Now we figure out the bound on Λ(t, ε, p),

Λ(t, ε, p) ≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(

1−
φ( t+ε

σj
)

t+ε
σj

)p · φ
( t− ε
σj

)

≤

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−
(

1−
φ( t+ε

σj
)

t+ε
σj

)p · φ
( t+ ε

σj

)
· e

tε

2σ2
j

≤ 2

(
1−

φ( t+ε
σj

)

t+ε
σj

)p

1−

(
1−

φ( t+ε
σj

)

t+ε
σj

)p · φ
( t+ ε

σj

)

≤ 2eH(λ) · t+ ε

pσj
≤ C
√

log d

p
,

where the second inequality comes from rearranging, the third inequality holds since exp ( tε
2σ2
j
) < 2

for t ≤ C0
√

log d. This is because ε = c/max{(log d)3/2, p log d} for some small enough constant
c > 0. And the last line holds by (B.47) and (B.48). Therefore Lemma B.9 is established.

Lemma B.10. Under the same conditions as Lemma B.9, we have

(1− 2Φ̄( t+εσj ))p−1

1− (1− 2Φ̄( t
σj

))p
·
(
pφ
( t− ε
σj

))2
= O

(√
log d

)
. (B.49)
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Proof. Note that the result (B.46) in Lemma B.9 can be rewritten as

p Λ(t, ε, p) =
(1− 2Φ̄( t+εσj ))p

1− (1− 2Φ̄( t
σj

))p
·
(
pφ
( t− ε
σj

))
= O

(√
log d

)
.

By similar derivations as in the proof of Lemma B.9, we can establish

(1− 2Φ̄( t+εσj ))p−1

1− (1− 2Φ̄( t
σj

))p
·
(
pφ
( t− ε
σj

))2
= O

(√
log d

)
.

Lemma B.11. For x ∈ [0, 1], we have (1− x)p ≤ 1− px+ 0.5p(p− 1)x2.

Proof. When p = 1, the above simply holds. Now we consider the case where p > 1. Let Q(x) =
(1− x)p − (1− px+ 0.5p(p− 1)x2), we have Q(0) = 0 and

Q′(x) = −p(1− x)(p−1) + p− p(p− 1)x ≤ −p(1− (p− 1)x) + p− p(p− 1)x = 0, (B.50)

where the inequality holds by applying Bernoulli’s inequality to (1 − x)(p−1) for p > 1, x ∈ [0, 1].
Therefore, Q(x) is monotonically decreasing, and the statement is proved.

B.4 Ancillary lemmas for Theorem 3.2

Remark B.3. Recall that the connectivity assumption of Theorem 3.2 assumes that there exists a
disjoint p-partition of nodes ∪p`=1C` = [d] such that σUjk = σVjk = 0 when j ∈ C` and k ∈ C`′ for some

` 6= `′. The more general version of the variance condition assumes: a0 ≤ σUjj = σVjj ≤ a1, ∀j ∈ [d];

given any j ∈ CU` with some `, there exists at least one m ∈ CU`′ such that σUjj = σUmm for any

`′ 6= `. Denote σ̃Ujk = σUjk/
√
σUjjσ

U
kk. And the general covariance condition says that there exists

some σ0 < 1 such that |σ̃Vjk| = |σVjk|/
√
σVjjσ

V
kk ≤ σ0 for any j 6= k and |{(j, k) : j 6= k, |σ̃Ujk| =

|σUjk|/
√
σUjjσ

U
kk > σ0}| ≤ b0 for some constant b0.

Lemma B.12. For the term II1 = E
[
e−β(||Z||∞−|Zj |) · 1(E1) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
with E1

defined in (B.20) and ε = c/max{(log d)3/2, p log d} for some small enough constant c > 0, whenever
t satisfies 0 ≤ t ≤ C0

√
log d for some constant C0 > 0, we have

II1

P(||V ||∞ > t)
≤ C ′ε log d

βp

(
1 +

b0√
1− (s+ (1− s)σ0)2

)
. (B.51)

for any s ∈ (0, 1), where σ0 < 1 and b0 are the constants in the assumption of Theorem 3.2.

Remark B.4. Recall the definition of Z = W (s). Hence the term II1 depends on s. In Lemma
B.5, we are able to derive a uniform upper bound when assuming the minimal eigenvalue condition
as in Theorem B.4. Since Theorem 3.2 does not make assumptions about the minimal eigenvalue
condition, we will bound the term II1 differently and the upper bound depend on s, as showed in the
following proof.
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Proof of Lemma B.12. We basically use the same proof strategy as Lemma but will separately deal
with two cases. First recall that

II1 = E
[
e−β(||Z||∞−|Zj |) · 1(||Z||∞ > ||G||∞, ||Z||∞ > Zj) · 1(t− ε ≤ ||Z||∞ ≤ t+ ε)

]
.

We define Z† = (Zk)k∈E† where

E† = {j} ∪ EG ∪ {k ∈ [d] : |σ̃Ujk| ≤ σ0, max
m∈EG

{|σ̃Umk|} ≤ σ0}. (B.52)

Under the condition of Theorem 3.2, we have |[d] \ E†| ≤ |{(j, k) : j 6= k, |σ̃Ujk|} > σ0}| ≤ b0 for

some constant b0. Note we can write 1 = 1(||Z†||∞ = ||Z||∞) +
∑

k∈[d]\E† 1(|Zk| = ||Z||∞). Then
we have

II1

P(||V ||∞ > t)
≤ II†1

P(||V ||∞ > t)
+ b0 · max

k∈[d]\E†
II

(k)
1

P(||V ||∞ > t)
, (B.53)

where II†1 and II
(k)
1 are defined as

II†1 :=E
[
e−β(||Z†||∞−|Zj |) · 1(||Z†||∞ > ||G||∞, ||Z†||∞ > Zj) · 1(t− ε ≤ ||Z†||∞ ≤ t+ ε)

]
,

II
(k)
1 :=E

[
e−β(|Zk|−|Zj |) · 1(|Zk| > ||G||∞, |Zk| > Zj) · 1(t− ε ≤ |Zk| ≤ t+ ε)

]
.

(B.54)

Denote the conditional density function of ||Z†||∞ | Zj = zj , G = g by f †g,zj (u). Then we apply

exactly the same derivations as in Lemma B.5 (except that f †g,zj (u) is bounded using Lemma B.13
instead of Lemma B.7) and obtain the following bound

II†1
P(||V ||∞ > t)

≤ C ′ε log d

βp
. (B.55)

Regarding the term II
(k)
1 , we follow the same derivations as in the beginning of the proof of Lemma

B.5. Specifically, we have

II
(k)
1 = E

[
e−β(|Zk|−|Zj |) · 1(|Zk| > ||G||∞, |Zk| > Zj) · 1(t− ε ≤ |Zk| ≤ t+ ε)

]
= E

[
eβ|Zj | · 1(||G||∞ ≤ t+ ε, |Zj | ≤ t+ ε)

(∫ t+ε

t−ε
fZj (u)e−βu1(u > ||G||∞, u > |Zj |)du

)]
,

(B.56)

where fZj ,G(u) denotes the conditional density of Zk given Zj , G. Recall the construction of G
described in the proof of Theorem 3.2, we have for any k 6= j, k /∈ EG = {m ∈ [d] : Zm =
G` for some ` ∈ [p]}, there exists at most one m ∈ {j} ∪ EG, such that Zk and Zm belong to
the same component. Denote that random variable by Zm0 , then fZj ,G(u) is just the conditional
density function of Zk given Zm0 . Since Z follows a multivariate Gaussian distribution, we can
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immediately figure out the expression of the conditional density fZm0
(u) and simply derive a bound

fZj ,G(u) = fZm0
(u) ≤ 1√

2πVar (Zk |Zm0)

=
1√

2π(σkk − σ2
km0

/σm0m0))

=
1√

2πσkk
· 1

1− σ2
km0

/(σkkσm0m0)

≤ 1√
2πa0

· 1

1− σ2
km0

/(σkkσm0m0)
, (B.57)

where σkk = Var (Zk) , σm0m0 = Var (Zm0) , σkm0 = Cov (Zk, Zm0) and we use the fact that σkk =
Var (Zk) = σUkk ≥ a0 (under the general variance assumption). Note Z =

√
sU +

√
1− sV , then we

have σ2
km0

= (Cov (Zk, Zm0))2 = (sσUkm0
+ (1− s)σVkm0

)2 where m0 ∈ {j} ∪ EG. Since |σ̃Ukm0
| ≤ 1 by

definition and |σ̃Vkm0
| ≤ σ0 under the assumption of Theorem 3.2, we have

(sσUkm0
+ (1− s)σVkm0

)2/(σkkσm0m0) = (sσ̃Ukm0
+ (1− s)σ̃Vkm0

)2 ≤ (s+ (1− s)σ0)2. (B.58)

Now we obtain a upper bound on the conditional density function fZj ,G(u) based on (B.57) and
(B.58). Combining this bound and following the same derivations as in Lemma B.5 to deal with the

term in (B.56), we establish the upper bound on the term II
(k)
1 /P(||V ||∞ > t) for any k ∈ [d] \ E†,

II
(k)
1

P(||V ||∞ > t)
≤ C ′ε log d

βp
· 1√

1− (s+ (1− s)σ0)2
. (B.59)

Combining (B.53), (B.54),(B.55) with (B.59), we derive the bound in (B.51).

Lemma B.13. Recall that the density function of the conditional distribution of ||Z†||∞ | {Zj =

zj , G = g} is denoted by f †g,zj (z) where Z† is defined in .... Suppose ε > 0, when 0 ≤ t ≤ C0
√

log d
for some constant C0 > 0 and |zj |, ||g||∞ ≤ t+ ε, we have

f †g,zj (z) ≤ C
√

log d, ∀ z ∈ (max{|zj |, ||g||∞}, t+ ε]. (B.60)

where the finite constant C depends on a0 and σ0 < 1.

Proof of Lemma B.13. Following exactly the same derivations as in Lemma B.7 (up to (B.45)), we
have

f †g,zj (z) ≤
6

σ·j

(
2ρ̄j(1 + c0) + 1

σ·j
C1

√
log d+ C2

√
log d

)
, (B.61)

for any z ∈ (max{|zj |, ||g||∞}, t+ ε], where C1, C2 are some constants. First, ρ̄j is defined in (B.37).
Simply, we have

ρ̄j ≤ max
k 6=j

|σjk|
σjj

≤
maxj σ

U
jj

minj σUjj
≤ a1

a0

under the general variance assumption. Recall the construction of G described in the proof of
Theorem 3.2, we have for any k 6= j, k /∈ EG = {m ∈ [d] : Zm = G` for some ` ∈ [p]}, there is at
most one m ∈ EG, such that Zk and Zm belong to the same component. Then we have∑

m∈EG

1(σkm 6= 0) ≤ 1,
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hence c0 = 1 by definition. Also note by the definition of Z† and E† in (B.52), for any k ∈ E†, k 6=
j, k 6= EG, we have

max{|σ̃Ujk|, |σ̃Vjk|}} ≤ σ0, max
m∈EG

{|σ̃Umk|, |σ̃Vmk|} ≤ σ0 (B.62)

under the assumption of Theorem 3.2. We will take advantage of this together with the above prop-
erty of G to derive a bound on σ·j . Similarly as in (B.37), we have σ2

·j := mink∈EX Var (Zk |Zj , G)

with EX := {k ∈ E† : k 6= j, k /∈ EG}. For each k ∈ EX , we have it can at most belong to the same
component as one of {j} ∪ EG, due to the property of G. Then we have

Var (Zk |Zj , G) ≥ min{Var (Zk |Zj) , min
m∈EG

{Var (Zk |Zm)}}

= σkk ·min{1− σ2
jk/(σjjσkk), min

m∈EG
{1− σ2

mk/(σmmσkk)}}

≥ a0 ·min{1− σ2
jk/(σjjσkk), min

m∈EG
{1− σ2

mk/(σmmσkk)}}. (B.63)

since (Zj , G) are all independent and σkk = Var (Zk) = σUkk ≥ a0 (under the general variance
assumption). Recall the definition of Z =

√
sU +

√
1− sV , we have

|σmk|/
√
σmmσkk = |Cov (Zk, Zm) |/

√
σmmσkk = |sσ̃Umk + (1− s)σ̃Vmk| ≤ σ0, ∀ s ∈ [0, 1], (B.64)

when m ∈ {j} ∪ EG. This is due to (B.62). Then we can derive a bound on 1/σ2
·j , i.e.,

1

σ2
·j

=
1

mink∈EX Var (Zk |Zj , G)

≤ 1

a0 mink∈EX min{1− σ2
jk/(σjjσkk),minm∈EG{1− σ2

mk/(σmmσkk)}}

≤ 1

a0(1− σ2
0)
,

where the first inequality holds by (B.63) and the second equality holds by (B.64). Combining the
above bound with (B.61), we finally establish (B.60) for some finite constant C.

C Ancillary propositions for FDR control

Throughout this section, we introduce some new notations. For a given mean zero random vector
Y ∈ Rd with positive semi-definite covariance matrix ΣY := E

[
Y Y >

]
∈ Rd×d, we denote its

Gaussian counterpart by Z ∈ Rd (i.e., E [Z] = 0 and its covariance matrix E
[
ZZ>

]
:= ΣZ equals

ΣY = (σYjk)1≤j,k≤d ). Consider n i.i.d. copies of Y , denoted by Y1, · · · ,Yn ∈ Rd. We define the
maximum TY and TZ as below,

TY :=

∥∥∥∥∥ 1√
n

n∑
i=1

Yi

∥∥∥∥∥
∞

, TZ := ||Z||∞, (C.1)

where q(α;TY ) and q(α;TZ) (α ∈ [0, 1]) are the corresponding upper quantile functions. Define
the Gaussian multiplier bootstrap counterpart as

TW :=

∥∥∥∥∥ 1√
n

n∑
i=1

Yiξi

∥∥∥∥∥
∞

, (C.2)
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where ξi
i.i.d.∼ N (0, 1) and are independent from Y1, · · · ,Yn. Let qξ(α;TW ) be the conditional

quantile of TW , then we have Pξ (TW ≥ qξ(α;TW )) = α. Note that we use the ξ subscript to
remind ourselves that the probability measure is induced by the multiplier random variables {ξi}ni=1

conditional on {Yi}ni=1. And we have the covariance matrix of 1√
n

∑n
i=1 Yiξi (conditional on {Yi}ni=1)

equals ΣW := 1
n

∑n
i=1 YiY

>
i . Denote ∆∞ = ||ΣZ−ΣW ||∞, which measures the maximal differences

between the true covariance matrix ΣZ and the sample version ΣW .

C.1 Cramér-type deviation bounds for the Gaussian multiplier bootstrap

Based on the Cramér-type Gaussian comparison bound in Theorem 3.1, the Cramér-type approx-
imation bound (Kuchibhotla et al., 2021), the maximal inequalities and a careful treatment to
the comparison of quantiles, we will establish the Cramér-type deviation bounds for the Gaussian
multiplier bootstrap (CGMB) in this section.

Proposition C.1 (CGMB). Assuming the covariance matrix ΣY satisfies 0 < c1 ≤ σYjj ≤ c2 <∞,
for any j ∈ [d] and Y satisfies the tail condition that max1≤i≤n max1≤j≤p ||Yij ||ψ1 ≤ K3 for some
constants c1, c2,K3, under the scaling condition (log ed)3(log(ed + n))56/3/n = o(1), we have the
following bound,

sup
α∈[αL,1]

∣∣∣∣P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)11/6

n1/6α
1/3
L

+
(log d)19/6

n1/6

)
, (C.3)

where αL satisfies q(αL;TZ) = O
(√

log d
)

and log11 d
nαL

= O(1).

The proof can be found in Appendix C.2. In practice, there are many situations where the
relevant statistics come from the maxima of approximated averages. In particular, the test statistics
in our node selection problem can not be directly expressed as maxima of scaled averages, but can
be approximated by a TY -like term with the approximation error suitably controlled. Therefore,
we also prove an extended version of Proposition C.1. Suppose the statistics of interest and its
Gaussian multiplier bootstrap counterpart, denoted by T and TB respectively, can be approximated
by TY (defined in (C.1)) and TW (defined in (C.2)). The quantile functions q(α;T ) and qξ(α;TB)
are defined correspondingly.

Proposition C.2 (CGMB with approximation). Under the same conditions as in Proposition C.1
and the additional assumption about the differences between the maximum statistics:

P(|T − TY | > ζ1) < ζ2, (C.4)

P(Pξ(|TB − TW | > ζ1) > ζ2) < ζ2, (C.5)

where ζ1, ζ2 ≥ 0 characterize the approximation error and satisfy ζ1 log d = O(1), ζ2 = O(αL), we
have the following Cramér-type deviation bound

sup
α∈[αL,1]

∣∣∣∣ P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = η(d, n, ζ1, ζ2, αL), (C.6)

where η(d, n, ζ1, ζ2, αL) = O

(
(log d)19/6

n1/6 + (log d)11/6

n1/6α
1/3
L

+ ζ1 log d+ ζ2
αL

)
.
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C.2 Proof of Proposition C.1

Before proving Proposition C.1, we present Lemma C.1. It bounds the conditional quantile
qξ(α;TW ) in terms of the quantile q(α;TZ) of the Gaussian maxima TZ when the maximal co-
variance matrix differences are controlled. In the proof of Lemma C.1, we apply the Cramér-
type comparison bound (3.1), which is establised in Theorem 3.1. To simplify the notation, we

denote the bound C1(log d)5/2∆
1/2
∞ in (3.1) by π(∆∞), where the constant C1 only depends on

min1≤j≤d{σUjj , σVjj}, max1≤j≤d{σUjj , σVjj}.

Lemma C.1. Suppose δ satisfies (log d)5δ = O(1). On the event {∆∞ ≤ δ}, we have

qξ(α;TW ) ≥ q
( α

1− π(δ)
;TZ

)
, (C.7)

qξ(α;TW ) ≤ q
( α

1 + π(δ)
;TZ

)
. (C.8)

Proof of Lemma C.1. On the event {∆∞ ≤ δ}, we have (log d)5∆∞ ≤ (log d)5δ = O(1), then by
applying Theorem 3.1 to Z and W , we obtain the following,

sup
0≤t≤C0

√
log d

∣∣∣∣Pξ(TW > t)

P(TZ > t)
− 1

∣∣∣∣ ≤ π(δ).

Therefore we have

Pξ
(
TW ≥ q

( α

1− π(δ)
;TZ

))
≥ P

(
TZ ≥ q

( α

1− π(δ)
;TZ

))
· (1− π(δ)) = α,

when t satisfies 0 ≤ t ≤ C0
√

log d. Then qξ(α;TW ) ≥ q
(

α
1−π(δ) ;TZ

)
immediately follows, i.e., (C.7)

holds. Similarly, on the event {∆∞ ≤ δ}, we have

Pξ
(
TW ≥ q

( α

1 + π(δ)
;TZ

))
≤ P

(
TZ ≥ q

( α

1 + π(δ)
;TZ

))
· (1 + π(δ)) = α.

Thus qξ(α;TW ) ≤ q
(

α
1+π(δ) ;TZ

)
, i.e., (C.8) holds.

Proof of Proposition C.1. By the triangle inequality, we have∣∣∣∣P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ ∣∣∣∣P(TY > q(α;TZ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣︸ ︷︷ ︸
I

+
|P(TY > qξ(α;TW ))− P(TY > q(α;TZ))|

P(TZ > q(α;TZ))︸ ︷︷ ︸
II

.

(C.9)
Regarding the first term I, we will directly apply Corollary 5.1 in Kuchibhotla et al. (2021). Specif-
ically, we verify the tail assumption on Y and the condition on the quantile that q(α;TZ) ≤
q(αL;TZ) = O

(√
log d

)
when α ∈ [αL, 1]. Then we obtain the following bound

I =

∣∣∣∣P(TY > q(α;TZ))

P (TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)19/6

n1/6

)
. (C.10)
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Regarding the second term II, we write it as

II =
1

α
|P(TY > qξ(α;TW ))− P(TY > q(α;TZ))|

≤ 1

α
P({TY > qξ(α;TW )} 	 {TY > q(α;TZ)})

=
1

α

(
P(TY > qξ(α;TW ), TY ≤ q(α;TZ)) + P(TY ≤ qξ(α;TW ), TY > q(α;TZ))

)
≤ 1

α
P(TY > qξ(α;TW ), TY ≤ q(α;TZ),∆∞ ≤ δ)

+
1

α
P(TY ≤ qξ(α;TW ), TY > q(α;TZ),∆∞ ≤ δ) +

2P (∆∞ > δ)

α
,

where the first inequality holds by the definition of the symmetric difference; recall the symmetric
difference between A and B is defined as A	B = (A \B)∪ (B \A)). Remark that we will give the
explicit choice of δ later in the proof. Now we apply Lemma C.1 (whose condition will be verified
in (C.16)) and further bound II as,

II ≤ 1

α

(
P
(
TY ≥ q

( α

1− π(δ)
;TZ

)
, TY ≤ q(α;TZ)

)
+ P(TY ≤ q

( α

1 + π(δ)
;TZ

)
, TY > q(α;TZ))

)
+

2P (∆∞ > δ)

α

=
1

α
P
(
q
( α

1− π(δ)
;TZ

)
≤ TY ≤ q

( α

1 + π(δ)
;TZ

))
+

2P (∆∞ > δ)

α
(C.11)

≤ 1

α
P
(
q
( α

1− π(δ)
;TZ

)
≤ TZ ≤ q

( α

1 + π(δ)
;TZ

))
+

2P (∆∞ > δ)

α
+ III

=
2π(δ)

1− π2(δ)
+

2P (∆∞ > δ)

α
+ III, (C.12)

where the term III in the second inequality is defined as,

III :=
1

α

∣∣∣∣P(q( α

1− π(δ)
;TZ

)
≤ TY ≤ q

( α

1 + π(δ)
;TZ

))
− P

(
q
( α

1− π(δ)
;TZ

)
≤ TZ ≤ q

( α

1 + π(δ)
;TZ

))∣∣∣∣ .
Below we further rewrite III as

III =
1

α

∣∣∣∣ α

1− π(δ)
· III1 −

α

1 + π(δ)
· III2

∣∣∣∣ ,
with III1, III2 defined as

III1 =
P
(
TY > q

(
α

1−π(δ) ;TZ
))
− P

(
TZ > q

(
α

1−π(δ) ;TZ
))

P
(
TZ > q

(
α

1−π(δ) ;TZ
)) ,

III2 =
P
(
TY > q

(
α

1+π(δ) ;TZ
))
− P

(
TZ > q

(
α

1+π(δ) ;TZ
))

P
(
TZ > q

(
α

1+π(δ) ;TZ
)) .

Thus by applying Corollary 5.1 of Kuchibhotla et al. (2021) to III1, III2 similarly as in (C.10), we
have the following bound on III,

III = O

(
(log d)19/6

n1/6

)
. (C.13)
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Combining (C.12) and (C.13) yields the following bound,

II ≤ 1

α
P({TY > qξ(α;TW )} 	 {TY > q(α;TZ)})

≤ C(log d)19/6

n1/6
+ C ′0π(δ) +

C ′′ P (∆∞ > δ)

α

≤ C(log d)19/6

n1/6
+ C ′(log d)5/2δ1/2 +

C ′′ E [∆∞]

δα

= O

((
E [∆∞] log5 d

α

)1/3

+
(log d)19/6

n1/6

)
, (C.14)

where the second inequality holds due to the definition of π(δ) and Markov’s inequality, the last
line holds by choosing δ to be (E [∆∞])2/3/(α1/3(log d)5/3). We will bound the term E [∆∞] using
Lemma C.1 in Chernozhukov et al. (2013). Specifically, under the stated tail assumption on Y ,
the condition (E.1) of Lemma C.1 in Chernozhukov et al. (2013) is satisfied; see Comment 2.2 in
Chernozhukov et al. (2013). Thus we have

E [∆∞] ≤
√
B2
n log d

n
∨ B

2
n(log(dn))2(log d)

n
, (C.15)

where Bn equals some constant C which does not depend on n. As promised previously, we verify
the assumption of Lemma C.1 for our choice of δ. Specifically, for δ = (E [∆∞])2/3/(α1/3(log d)5/3),
we have (log d)5δ satisfies the following

(log d)5δ ≤ (log d)5(E [∆∞])2/3

α
1/3
L (log d)5/3

=

(
log11 d

nαL

)1/3

= O(1), (C.16)

under the stated condition on αL. Finally, when α ∈ [αL, 1], we combine (C.9), (C.10), (C.14) with
(C.15), then establish (C.3), i.e.,

sup
α∈[αL,1]

∣∣∣∣P(TY > qξ(α;TW ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = O

(
(log d)11/6

n1/6α
1/3
L

+
(log d)19/6

n1/6

)
.

C.3 Proof of Proposition C.2

Before proving Proposition C.2, we need to present a simple lemma. It translates the approximation
error ζ1, ζ2 into the bounds on the quantiles. And its proof is quite straightforward thus omitted.

Lemma C.2. Under the assumption in (C.5), we have, for α ∈ (0, 1),

P(qξ(α;TB) ≤ qξ(α+ ζ2;TW ) + ζ1) ≥ 1− ζ2,

P(qξ(α;TB) ≥ qξ(α− ζ2;TW )− ζ1) ≥ 1− ζ2.

Proof of Proposition C.2. By the triangle inequality, we have∣∣∣∣ P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ ∣∣∣∣P(TY > q(α;TZ))

P(TZ > q(α;TZ))
− 1

∣∣∣∣︸ ︷︷ ︸
I

+
|P(T > qξ(α;TB))− P(TY > q(α;TZ))|

P(TZ > q(α;TZ))︸ ︷︷ ︸
II

.

(C.17)
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Note that (C.10) in the proof of Proposition C.1 immediately gives the bound on I, i.e.,

I = O
((log d)19/6

n1/6

)
. (C.18)

Regarding the term II, we have

II =
1

α

∣∣P(T > qξ(α;TB))− P(TY > q(α;TZ))
∣∣

≤ 1

α

∣∣P({T > qξ(α;TB)} 	 {TY > q(α;TZ)})
∣∣

=
1

α
P(T > qξ(α;TB), TY ≤ q(α;TZ)) +

1

α
P(T ≤ qξ(α;TB), TY > q(α;TZ)). (C.19)

To bound the two terms in (C.19), first notice that on the event |T − TY | > ζ1, we have

{T > qξ(α;TB), TY ≤ q(α;TZ)} ⊂ {TY > qξ(α;TB)− ζ1, TY ≤ q(α;TZ)}.

Then under the assumption in (C.4), i.e., P(|T − TY | > ζ1) < ζ2, we obtain

P(T > qξ(α;TB), TY ≤ q(α;TZ)) ≤ P(TY > qξ(α;TB)− ζ1, TY ≤ q(α;TZ)) + ζ2.

Applying such strategies to the second term in (C.19) similarly, we get the following,

II ≤ II1 + II2 +
2ζ2

α
, where (C.20)

II1 :=
1

α
P(TY > qξ(α;TB)− ζ1, TY ≤ q(α;TZ)),

II2 :=
1

α
P(TY ≤ qξ(α;TB) + ζ2, TY > q(α;TZ)).

Under the assumption (C.5), by Lemma C.2, we have

P(qξ(α;TB) ≤ qξ(α+ ζ2;TW ) + ζ1) ≥ 1− ζ2,

P(qξ(α;TB) ≥ qξ(α− ζ2;TW )− ζ1) ≥ 1− ζ2.

Hence we can bound II1, II2 as below,

II1 ≤ 1

α
P (TY > qξ(α− ζ2;TW )− 2ζ1, TY ≤ q(α;TZ)) +

ζ2

α
,

II2 ≤ 1

α
P (TY ≤ qξ(α+ ζ2;TW ) + 2ζ1, TY > q(α;TZ)) +

ζ2

α
.

Now we will use the strategy of deriving (C.11) in the proof of Proposition C.1, i.e., apply Lemma
C.1, then we have,

II1 ≤ 1

α
P
(
TY > q

( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1, TY ≤ q(α;TZ)

)
+

P (∆∞ > δ)

α
+
ζ2

α
,

II2 ≤ 1

α
P
(
TY ≤ q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1, TY > q(α;TZ)

)
+

P (∆∞ > δ)

α
+
ζ2

α
.

Combining the above two inequalities with (C.20), we have

II ≤ III +
2P (∆∞ > δ)

α
+

4ζ2

α
, (C.21)
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where III is defined as below,

III :=
1

α

∣∣∣∣P(TY > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TY > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)∣∣∣∣
=

1

α

∣∣∣P(TY > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TY > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
+ P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
+ P

(
TZ > q

( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

) ∣∣∣
≤ III1 + III2 + III3.

The last line comes from the triangle inequality, with III1, III2, III3 defined as,

III1 :=
1

α

∣∣∣P(TY > q
( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
− P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)∣∣∣,
III2 :=

1

α

∣∣∣P(TY > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)∣∣∣,
III3 :=

1

α

∣∣∣P(TZ > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)∣∣∣.
We first bound III3 by the triangle inequality,

III3 =
1

α

∣∣∣P(TZ > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)∣∣∣
≤ 1

α

∣∣∣P(TZ > q
( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
− α+ ζ2

1 + π(δ)

∣∣∣︸ ︷︷ ︸
III31

+
1

α

∣∣∣P(TZ > q
( α− ζ2

1− π(δ)
;TZ

)
− 2ζ1

)
− α− ζ2

1− π(δ)

∣∣∣︸ ︷︷ ︸
III32

+
1

α

∣∣∣ α− ζ2

1− π(δ)
− α+ ζ2

1 + π(δ)

∣∣∣︸ ︷︷ ︸
III33

.

Note that III31 can be rewritten as

III31 =
α+ ζ2

α(1 + π(δ))
·

∣∣∣P(TZ > q
( α+ζ2

1+π(δ) ;TZ
)

+ 2ζ1

)
− P

(
TZ > q

( α+ζ2
1+π(δ) ;TZ

)) ∣∣∣
P
(
TZ > q

( α+ζ2
1+π(δ) ;TZ

)) (C.22)

≤ α+ ζ2

α(1 + π(δ))
·K4ζ1

(
q
( α+ ζ2

1 + π(δ)
;TZ

)
+ ζ1

)
≤ Cζ1 log d, (C.23)

where the first inequality holds by applying a non-uniform anti-concentration bound. Specifically,
we apply the part 3 of Theorem 2.1 in Kuchibhotla et al. (2021) (with r− ε = q

( α+ζ2
1+π(δ) ;TZ

)
, r+ ε =

q
( α+ζ2

1+π(δ) ;TZ
)

+ 2ζ1 ) to the Gaussian random vector Z. Remark that the term K3 is a constant

only depending on min1≤j≤d{σYjj},max1≤j≤d{σYjj} and the median of Gaussian maxima (up to 2-
nd power, hence at most of rate O(log d)). As for the second inequality, under the assumption
ζ2 = O(αL), we have ζ2

α ≤
ζ2
αL

= O(1) when α ∈ [αL, 1]; we also use the fact that ζ1 = O(
√

log d)

(which holds under the stated assumption), and q
( α+ζ2

1+π(δ) ;TZ
)

= O(
√

log d) (which will be verified
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later in (C.27)). Thus we show III31 = O(ζ1 log d). Similarly, III32 can be bounded as O(ζ1 log d).
As for III33, we have

III33 =
1

α

∣∣∣ α− ζ2

1− π(δ)
− α+ ζ2

1 + π(δ)

∣∣∣ ≤ 2π(δ)

1− π2(δ)
+

2ζ2

α(1− π2(δ))
.

Thus by combining the bounds on III31, III32, III33, we obtain

III3 ≤ III31 + III32 + III33 ≤ C ′ζ1 log d+
2π(δ)

1− π2(δ)
+

2ζ2

α(1− π2(δ))
. (C.24)

Regarding the term III1, we first consider the following,

III11 :=
1

α
P
(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
≤ 1

α
P
(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

))
·
(

1 +K4ζ1

(
q
( α+ ζ2

1 + π(δ)
;TZ

)
+ ζ1

))
=

α+ ζ2

α(1 + π(δ))
·
(

1 +K4ζ1

(
q
( α+ ζ2

1 + π(δ)
;TZ

)
+ ζ1

))
≤ C ′′ + Cζ1 log d = O(1),

where the first inequality holds due to the derivations from (C.22) to (C.23), the second inequality
holds due to the last inequality in (C.23) and the stated assumption ζ2 = O(αL). Then we bound
III1 in terms of III11 and write

III1 =
1

α

∣∣∣P(TY > q
( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)
− P

(
TZ > q

( α+ ζ2

1 + π(δ)
;TZ

)
+ 2ζ1

)∣∣∣
= III11 ·

∣∣∣∣∣P
(
TY > q

(
α+ζ2

1+π(δ) ;TZ

)
+ 2ζ1

)
− P

(
TZ > q

(
α+ζ2

1+π(δ) ;TZ

)
+ 2ζ1

)
P
(
TZ > q

(
α+ζ2

1+π(δ) ;TZ

)
+ 2ζ1

) ∣∣∣∣∣
≤ III11 ·

(log d)19/6

n1/6
= O

((log d)19/6

n1/6

)
,

where the inequality holds by applying Corollary 5.1 in Kuchibhotla et al. (2021) again to TY as
the derivations of (C.10) in the proof of Proposition C.1. The term III2 can be similarly bounded
as III1. Combining the above bounds on III1, III2 and (C.24) yields the following bound on III,

III ≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

2π(δ)

1− π2(δ)
+

2ζ2

α(1− π2(δ))
. (C.25)

By (C.17), (C.18), (C.21) and (C.25), we have, when α ∈ [αL, 1],∣∣∣∣ P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ ≤ I + II ≤ I + III +
2P (∆∞ > δ)

α
+

4ζ2

α

≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

C ′′ζ2

α
+

2π(δ)

1− π2(δ)
+

2P (∆∞ > δ)

α

≤ C(log d)19/6

n1/6
+ C ′ζ1 log d+

C ′′ζ2

α
+
C(log d)11/6

n1/6α
1/3
L

= O

(
(log d)19/6

n1/6
+

(log d)11/6

n1/6α
1/3
L

+ ζ1 log d+
ζ2

αL

)
. (C.26)
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where the third line holds due to the derivations between (C.13) and (C.16) in the proof of Proposi-
tion C.1. Remark by the choice of δ and (C.16), we have π(δ) = O(1). Also note that ζ2 = O(αL),
hence we can show

q
( α+ ζ2

1 + π(δ)
;TZ

)
= O(

√
log d). (C.27)

when α ∈ [αL, 1]. Hence we are able to verify q
( α+ζ2

1+π(δ) ;TZ
)

= O(
√

log d), as promised when deriving

(C.23). Denoting the bound in (C.26) by η(d, n, ζ1, ζ2, αL), we finally establish (C.6), i.e.,

sup
α∈[αL,1]

∣∣∣∣ P(T > qξ(α;TB))

P(TZ > q(α;TZ))
− 1

∣∣∣∣ = η(d, n, ζ1, ζ2, αL).

D Validity and power analysis of single node testing

In this section, we focus on Lemma A.1 and Lemma C.2. Note that these results are established
using the same strategies as Theorem 4.1, Lemma S.1 and Theorem S.7 in Lu et al. (2017). We
still present their proofs for completeness.

D.1 Proof of Lemma A.1

Proof. For given node j, we denote N0j = {(j, k) : Θjk = 0}, then N c
0j = {(j, k) : |Θjk| > 0}. First

we consider the following event,

E =
{

min
e∈Nc

0j

√
n|Θ̃d

e | > ĉ(α,E0)
}
, where E0 = {(j, k) : k 6= j, k ∈ [d]}.

By the definition of Algorithm 1, we immediately have the rejected edge set in the first iteration
can be written as

E1 = {(j, k) ∈ E0 :
√
n|Θ̃d

jk| > ĉ(α,E0)}.

Regarding (i) i.e., under the alternative hypothesis H1j : ‖Θj,−j‖0 ≥ kτ , we first note ψj,α = 1 on
the event E . Also notice that N c

0j ⊆ E1 given E . Then the following bound immediately follows:

P (ψj,α = 1) ≥ P (E) . (D.1)

We further derive a lower bound for P (E) by the triangle inequality:

P (E) ≥ P

(
min
e∈Nc

0j

|Θ?
e| >

ĉ(α,E0)√
n

+ C0

√
log d

n
and ||Θ̃d −Θ?||max ≤ C0

√
log d

n

)
. (D.2)

For any fixed α ∈ (0, 1), we consider sufficiently large n and d such that 2/d2 ≤ α/2 and P(TE0 >
ĉ(α,E0)) > α/2. This is possible due to the convergence result of the quantile approximation (D.27).
Then, the above result together with (D.29) yields the following:

ĉ(α,E0) ≤ C0

√
log d

n
·
√
n = C0

√
log d.
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Choosing the constant in the signal strength condition of Lemma A.1 to be 2C0 (i.e., for any
(j, k) ∈ N c

0j , |Θjk| ≥ 2C0

√
log d/n) and applying (D.29), we have

min
e∈Nc

0j

|Θ?
e| ≥ 2C0

√
log d

n
≥ ĉ(α,E0)√

n
+ C0

√
log d

n
,

P

(
||Θ̃d −Θ?||max ≤ C0

√
log d

n

)
≥ 1− 2/d.

Combining the above two inequalities with (D.1) and (D.2), we have P (ψj,α = 1) ≥ P (E) > 1−2/d.
Therefore, we establish

lim
(n,d)→∞

P (ψj,α = 1) = 1.

Now we consider (ii), i.e., the case when ‖Θj,−j‖0 < kτ . Since ‖Θj,−j‖0 ≤ kτ − 1, ψj,α = 1 implies
at least one edge in N0j is rejected in Algorithm 1. Suppose the first rejected edge in N0j is (j, k∗)
and it is rejected at the t∗-th iteration. Then we have N0j ⊆ Et∗−1 and

max
e∈N0j

√
n|Θ̃d

e −Θ?
e| ≥

√
n|Θ̃d

jk∗ −Θ?
jk∗ | ≥ ĉ(α,Et∗−1) ≥ ĉ(α,N0j), (D.3)

where the first inequality holds since (j, k∗) ⊂ N0j , the second inequality holds since Θ?
jk∗

= 0
and the edge (j, k∗) is rejected at the t∗-th iteration. The last inequality holds simply because
N0j ⊆ Et∗−1. Therefore by applying Lemma 2.1 with E chosen to be N0j , we have

lim
(n,d)→∞

P (ψj,α = 1) ≤ α.

D.2 Proof of Lemma 2.1

We first recall the definition of U(M, s, r0) and write down the statement of Lemma 2.1 below.

U(M, s, r0) =
{

Θ ∈ Rd×d
∣∣λmin(Θ) ≥ 1/r0, λmax(Θ) ≤ r0,max

j∈[d]
‖Θj‖0 ≤ s, ‖Θ‖1 ≤M

}
. (D.4)

Lemma D.1. Suppose that Θ ∈ U(M, s, r0). If (log(dn))7/n+ s2(log dn)4/n = o(1), for any edge
set E ⊆ V × V, we have for any α ∈ [0, 1],

lim
(n,d)→∞

sup
Θ∈U(M,s,r0)

sup
α∈(0,1)

∣∣∣∣P(max
e∈E

√
n|Θ̃d

e −Θ?
e| > ĉ(α,E)

)
− α

∣∣∣∣ = 0. (D.5)

Throughout the following parts, we will write the standardized one-step estimator explicitly:

Θ̂d
jk/
√

Θ̂d
jjΘ̂

d
kk, where Θ̂d

jk := Θ̂jk −
Θ̂>j

(
Σ̂Θ̂k − ek

)
Θ̂>j Σ̂j

.

In order to prove (D.5), we need preliminary results on the estimation rates of CLIME estimator.
Cai et al. (2011) gives the following theorem. We can also prove the same result for the GLasso
estimator (Janková and van de Geer, 2018). Therefore, Lemma D.1 applies for both the CLIME
estimator and the GLasso estimator. This also implies that the results in our paper apply to both
the CLIME estimator and the GLasso estimator.
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Lemma D.2. Suppose Θ ∈ U(M, s, r0) and we choose the tuning parameter λ ≥ CM
√

log d/n in
the CLIME estimator. With probability greater than 1− c/d2, we have the following bounds:

||Σ̂−Σ||max ≤ C
√

log d

n
, ||Θ̂Σ̂− I||max ≤ CM

√
log d

n
, and (D.6)

||Θ̂−Θ||max ≤ CM
√

log d

n
, ||Θ̂−Θ||1 ≤ CM

√
s2 log d

n
, (D.7)

where C is a universal constant only depending on r0 in (D.4).

Remark D.1. Note the first inequality in (D.6) directly follows from Equation (26) in Cai et al.
(2011), the second inequality follows from the constraint in the CLIME estimator and the third
inequality holds due to Theorem 6 in Cai et al. (2011).

Given a random variable Z, we define its ψ`-norm for ` ≥ 1 as ‖Z‖ψ` = supp≥1 p
−1/`(E|Z|p)1/p.

The following lemma controls the ψ`-norm of X and gives the lower bound of the variance of the
debiased estimator.

Lemma D.3. There exist universal constants c and C only depending on r0 in (D.4) such that

sup
‖v‖2=1

‖v>Σ−1/2X‖ψ2 ≤ C and min
j,k∈[d]

E[(Θ>j (XX> −Σ)Θk)
2] ≥ c. (D.8)

Proof. The first inequality in (D.8) immediately follows since v>Σ−1/2X ∼ N(0, 1) for any ‖v‖2 =
1. Regarding the second inequality, note that E[(Θ>j (XX> − Σ)Θk)

2] = Var(Θ>j XX>Θk).

Below we calculate the expression of the general form Var
(
u>XX>v

)
. Specifically, we apply

Isserlis’ theorem (Isserlis, 1918) to deal with the moments of Gaussian random variables. For any
deterministic vectors u,v ∈ Rd, Isserlis’ theorem says

Var(u>XX>v) = E[(u>X)2(v>X)2]− (E[u>Xv>X])2

= E[(u>X)2]E[(v>X)2] + (E[u>Xv>X])2

= (u>Σu>)(v>Σv>) + (u>Σv>)2.

Therefore, we obtain the following,

E[(Θ>j (XX> −Σ)Θk)
2] = (Θ>j ΣΘ>j )(Θ>k ΣΘ>k ) + (Θ>j ΣΘ>k )2 = ΘjjΘkk + Θ2

jk ≥ 1/r2
0,

where the last inequality holds since λmin(Θ) ≥ 1/r0 when Θ ∈ U(M, s, r0).

Now we are ready to prove Lemma 2.1. Note the proof of this lemma follows a similar idea as
the one used in Proposition 3.1 of Neykov et al. (2019). Since Lemma 2.1 involves the standardized
version of the one-step estimator in Neykov et al. (2019), we still present the detailed proof for
completeness.

Proof of Lemma 2.1. To approximate

TE := max
(j,k)∈E

√
n

∣∣∣∣(Θ̂d
jk/
√

Θ̂d
jjΘ̂

d
kk −Θjk/

√
ΘjjΘjk)

∣∣∣∣ , (D.9)

by the multiplier bootstrap process

TBE := max
(j,k)∈E

1√
n Θ̂jjΘ̂kk

∣∣∣∣ n∑
i=1

Θ̂>j (XiX
>
i Θ̂k − ek)ξi

∣∣∣∣, (D.10)
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we define two intermediate processes

T̆E := max
(j,k)∈E

∣∣∣∣ 1√
n ΘjjΘkk

n∑
i=1

Θ>j (XiX
>
i Θk − ek)

∣∣∣∣, (D.11)

T̆BE := max
(j,k)∈E

∣∣∣∣ 1√
n ΘjjΘkk

n∑
i=1

Θ>j (XiX
>
i Θk − ek)ξi

∣∣∣∣. (D.12)

The strategy of proving this lemma is to verify the three conditions in Corollary 3.1 of Chernozhukov
et al. (2013):

(a) minj,k E[(Θ>j (XX>Θk − ek))
2] > c and maxj,k∈[d] ||Θ>j (XX>Θk − ek)||ψ1 ≤ C for some

positive constants c and C;

(b) P(|TE − T̆E | > ζ1) < ζ2 holds for some ζ1, ζ2 > 0;

(c) And P(Pξ(|TBE − T̆BE | > ζ1 | {Xi}ni=1) > ζ2) < ζ2 holds for ζ1
√

log d+ ζ2 = o(1).

Notice that in Chernozhukov et al. (2013), the original conditions require the last scaling to be
ζ1
√

log d + ζ2 = o(n−c1) for some c1. This is because they pursue a stronger result that |P(TE >
ĉ(α,E))− α| = O(n−c1). Since we do not emphasize on the polynomial decaying in our result, we
only require ζ1

√
log d+ ζ2 = o(1).

We start by checking the first condition (a). Lemma D.3 immediately implies the first part.
By the second condition in (D.8), we have ‖XjXk − E[XjXk]‖ψ1 ≤ C. By the definition of the
ψ-norms, we have

max
j,k∈[d]

‖Θ>j (XiX
>
i Θk − ek)‖ψ1 ≤ r2

0‖(XjXk − E[XjXk])‖ψ1

≤ r2
0 sup
‖v‖2=1

‖v>XX>v − E[v>XX>v]‖ψ1 = O(1).

Regarding the condition (b), we check by bounding the difference |TE− T̆E |. Recall the one-step
estimator

Θ̂d
jk = Θ̂jk −

Θ̂>j

(
Σ̂Θ̂k − ek

)
Θ̂>j Σ̂j

,

and plug it into TE . Then we have the following bound,

|TE − T̆E | =

∣∣∣∣∣∣ max
(j,k)∈E

√
n ·

 Θ̂d
jk√

Θ̂d
jjΘ̂

d
kk

−
Θjk√

ΘjjΘjk

− max
(j,k)∈E

√
n√

ΘjjΘkk

Θ>j (Σ̂Θk − ek)

∣∣∣∣∣∣
≤ I1I2

min
(j,k)∈E

√
ΘjjΘkk

+
I3

min
(j,k)∈E

√
Θ̃d
jjΘ̃

d
kk

, (D.13)

where I1 = max
(j,k)∈E

|Θ̂d
jjΘ̂

d
kk −ΘjjΘkk|, I2 = max

(j,k)∈E
|
√
n ·Θ>j

(
Σ̂Θk − ek| and

I3 = max
(j,k)∈E

∣∣∣√n(Θ̂d
jk −Θjk)−

√
n ·Θ>j

(
Σ̂Θk − ek

)∣∣∣.
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Note I1 can be bounded using Lemma D.4, i.e.,

I1 = max
(j,k)∈E

|Θ̂d
jjΘ̂

d
kk −ΘjjΘkk| ≤ 2M

∥∥Θ̂d −Θ
∥∥

max
≤ CM2

√
log d

n
, (D.14)

with probability 1− 1/d2. As for the term I2, we have

I2 = max
(j,k)∈E

∣∣∣√nΘ>j
(
Σ̂Θk − ek

∣∣∣ = max
(j,k)∈E

√
n
∣∣∣Θ>j (Σ̂−Σ

)
Θk

∣∣∣
≤
√
nM2

∥∥Σ̂−Σ
∥∥

max
≤ CM2

√
log d. (D.15)

Denote Θ̆k = (Θ̂k1, . . . , Θ̂k(j−1),Θkj , Θ̂k(j+1), . . . , Θ̂kd)
> ∈ Rd. To deal with the term I3, we first

rewrite the following

√
n(Θ̂d

jk −Θjk) = −
√
n ·

Θ̂>j
(
Σ̂Θ̆k − ek

)
Θ̂>j Σ̂j

, (D.16)

then quantify
√
nΘ̂>j

(
Σ̂Θ̆k − e>k

)
. Notice that

√
n · Θ̂>j

(
Σ̂Θ̆k − e>k

)
=
√
n · Θ̂>j

(
Σ̂Θk − e>k

)︸ ︷︷ ︸
II1

+
√
n · Θ̂>j Σ̂

(
Θ̆k −Θk

)︸ ︷︷ ︸
II2

. (D.17)

Further we expand II1 as

II1 =
√
n ·Θ>j

(
Σ̂Θk − ek

)︸ ︷︷ ︸
II11

+
√
n ·
(
Θ̂>j −Θ>j

)(
Σ̂Θk − ek

)︸ ︷︷ ︸
II12

, (D.18)

where II11 can be rewritten as II11 = 1√
n

∑n
i=1 Θ>j (XiX

>
i Θk − ek). We bound |II12| as

|II12| =
√
n ·
(
Θ̂j −Θj

)>(
Σ̂−Σ

)
Θk ≤

√
n ·
∥∥Θ̂j −Θj

∥∥
1

∥∥Σ̂−Σ
∥∥

max
‖Θk‖1. (D.19)

According to Lemma D.2, (D.19) yields that

max
j,k∈[d]

|II12| .M2 s log d√
n
, (D.20)

with probability 1− 1/d2. By Hölder’s inequality and Lemma D.2, we finally obtain the bound on
II2:

max
j,k∈[d]

|II2| ≤
√
n · max

j,k∈[d]
‖Θ̂>j Σ̂−j‖∞

∥∥Θ̂k −Θk

∥∥
1
.M2 s log d√

n
, (D.21)

with probability 1 − 1/d2. Therefore, we conclude that by (D.20) and (D.21), with probability
1− 1/d2, the following holds:

max
j,k∈[d]

√
n ·
∣∣∣Θ̂>j (Σ̂Θ̆k − e>k

)
−Θ>j

(
Σ̂Θk − e>k

)∣∣∣ .M2 s log d√
n
. (D.22)

Lemma D.2 also implies

max
j∈[d]
|Θ̂>j Σ̂j − 1| ≤ max

j∈[d]
||Θ̂>j Σ̂− ej ||∞ .M

√
log d

n
. (D.23)
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Combining (D.17), (D.18) with (D.22) and (D.23), for sufficiently large d, n, we have, with proba-
bility 1− 1/d2, the following holds:

I3 ≤ max
(j,k)∈E

√
n
∣∣∣Θ̂>j (Σ̂Θ̆k − ek

)
Θ̂>j Σ̂j

−Θ>j
(
Σ̂Θk − ek

)∣∣∣
≤ max

(j,k)∈E

(
2
√
n|Θ̂>j Σ̂j − 1| · |Θ>j

(
Σ̂−Σ

)
Θk|

)
+ 2 max

(j,k)∈E
|Θ̂>j

(
Σ̂Θ̆k − ek

)
−Θ>j

(
Σ̂Θk − ek

)
|

≤ 2M
√
nmax
j∈[d]
|Θ̂>j Σ̂j − 1| · ||Σ̂−Σ||max + 2 max

j,k∈[d]
(|I12|+ |I2|) .M2 s log d√

n
, (D.24)

where the second inequality uses |x/(1 + δ) − y| ≤ 2|yδ| + 2|x − y| for any |δ| < 1/2. Therefore,
combining (D.13), (D.14),(D.15) with (D.24) and the fact min

(j,k)∈E

√
ΘjjΘkk ≥ λmin(Θ) ≥ 1/r0 (as

Θ ∈ U(M, s, r0)), we obtain the following:

P(|TE − T̆E | > ζ1) < ζ2, (D.25)

where ζ1 = s log d/
√
n and ζ2 = 1/d2; thus the condition (b) is verified. Also note that ζ1

√
log d+

ζ2 = s(log d)3/2/
√
n+ 1/d2 = o(1) holds under the stated scaling condition of Lemma 2.1.

Regarding the third condition (c), we bound the difference between TBE and T̆BE as

|TBE − T̆BE | ≤ max
(j,k)∈E

∣∣∣ 1√
n

n∑
i=1

( Θ̂>j√
Θ̂jjΘ̂kk

(
XiX

>
i Θ̂k − ek

)
−

Θ>j√
ΘjjΘkk

(
XiX

>
i Θk − ek

))
ξi

∣∣∣
Conditioning on the data {Xi}ni=1, the right hand side of the above inequality is a suprema of

a Gaussian process. Therefore, we need to bound the following conditional variance

max
(j,k)∈E

1

n

n∑
i=1

[ Θ̂>j√
Θ̂jjΘ̂kk

(
XiX

>
i Θ̂k − ek

)
−

Θ>j√
ΘjjΘkk

(
XiX

>
i Θk − ek

)]2

Note the summand (for each i) can be bounded by

2
III1III2

min
(j,k)∈E

ΘjjΘkk
+ 2

III3

min
(j,k)∈E

Θ̂jjΘ̂kk

where III1, III2 and III3 are defined and bounded as below:

III1 := max
(j,k)∈E

|Θ̂jjΘ̂kk −ΘjjΘkk|2 = II2
1 ≤

(
CM2

√
log d

n

)2

III2 := max
(j,k)∈E

[Θ>j
(
XiX

>
i Θk − ek

)
]2 = max

(j,k)∈E
[Θ>j

(
XiX

>
i −Σ

)
Θk]

2

≤
[
M2 max

i
‖XiX

>
i −Σ‖max

]2

III3 = max
(j,k)∈E

∣∣∣Θ̂>j (XiX
>
i Θ̂k − ek

)
−Θ>j

(
XiX

>
i Θk − ek

)∣∣∣2
.

[
2M‖Θ̂−Θ‖1 max

i
‖XiX

>
i −Σ‖max

]2
.
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According to Lemma D.3, we have with probability 1−1/d2, maxi ‖XiX
>
i −Σ‖max ≤ C

√
log(dn).

Therefore, the event

E =
{

max
(j,k)∈E

1

n

n∑
i=1

[ Θ̂>j√
Θ̂jjΘ̂kk

(
XiX

>
i Θ̂k−ek

)
−

Θ>j√
ΘjjΘkk

(
XiX

>
i Θk−ek

)]2
≤ CM2 (s log(dn))2

n

}
satisfies P(Ec) < 1/d2. Therefore, by the maximal inequality, under the event E , we have

E

 max
(j,k)∈E

1√
n

n∑
i=1

( Θ̂>j√
Θ̂jjΘ̂kk

(
XiX

>
i Θ̂k − ek

)
−

Θ>j√
ΘjjΘkk

(
XiX

>
i Θk − ek

))
ξi | {Xi}ni=1


. M2 (s log dn)

√
log d√

n
.

Applying Borell’s inequality, we have with probability 1− 1/d2,

P

 max
(j,k)∈E

1√
n

n∑
i=1

Θ̂>j
(
XiX

>
i Θ̂k − ek

)√
Θ̂jjΘ̂kk

−
Θ>j
(
XiX

>
i Θk − ek

)√
ΘjjΘkk

 ξi > C

√
s2 log4 dn

n
| {Xi}ni=1

 ≤ 1/d2.

This implies that

P
(
Pξ(|TBE − T̆BE | >

√
(s2 log4 dn)/n) > 1/d2

)
< 1/d2.

Now we can verify the condition (c) by showing

P(Pξ(|TBE − T̆BE | > ζ1 | {Xi}ni=1) > ζ2) < ζ2, (D.26)

where ζ1 = s(log d)2/
√
n, ζ2 = 1/d2 and the condition ζ1

√
log d+ζ2 = s(log d)3/2/

√
n+1/d2 = o(1)

holds under the stated scaling condition of Lemma 2.1. Therefore, by Corollary 3.1 of Chernozhukov
et al. (2013), we have

lim
(n,d)→∞

|P(TE > ĉ(α,E))− α| = 0. (D.27)

And it holds for any edge set E, thus the proof is complete.

Lemma D.4. Under the same conditions as Lemma 2.1, we have

P
(

max
j,k∈[d]

|Θ̂d
jk −Θjk| > C0

√
log d

n

)
<

2

d2
, (D.28)

for some constant C0 > 0.

Proof. By (D.16) and (D.24), we have with probability 1− 1/d2,

max
j,k∈[d]

|Θ̂d
jk −Θjk + Θ>j

(
Σ̂Θk − ek

)
| ≤ C1

s log d

n
.

By Lemma D.3 and ‖Θ‖2 ≤ r0, we have ‖Θ>j XX>Θk‖ψ1 ≤ C2r
2
0. Applying the maximal inequality

(Lemma 2.2.2 in Van Der Vaart and Wellner (1996)), we have for some constant C3 > 0

P
(

max
j,k∈[d]

|Θ>j
(
Σ̂Θk − ek

)
| > C3r

2
0

√
log d

n

)
≤ P

(
max
j,k∈[d]

∣∣∣ 1
n

n∑
i=1

(Θ>j XiX
>
i Θk − E[Θ>j XiX

>
i Θk)]

∣∣∣ > C3r
2
0

√
log d

n

)
≤ 1/d2.
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With C0 = C1+C3, (D.28) is proved. And it is not hard to show a similar result for the standardized
one-step estimator also holds, i.e.,

P
(

max
j,k∈[d]

|Θ̃d
jk −Θ?

jk| > C ′0

√
log d

n

)
<

2

d2
(D.29)

for some constant C ′0 > 0.

E Tables and plots deferred from the main paper

E.1 Graph pattern demonstration

hub random

scale−free knn

E.2 Tables of q d0
d

E.3 Supplementary FDP and Power plots
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Table 3: q d0d

d = 300 q = 0.1 q = 0.2

n 200 300 400 200 300 400

p = 20

hub 0.0930 0.0930 0.0930 0.1870 0.1870 0.1870
random 0.0620 0.0610 0.0600 0.1230 0.1220 0.1200

scale-free 0.0810 0.0810 0.0810 0.1620 0.1630 0.1620
knn 0.0680 0.0700 0.0690 0.1360 0.1390 0.1390

p = 30

hub 0.0900 0.0900 0.0900 0.1800 0.1800 0.1800
random 0.0810 0.0810 0.0810 0.1620 0.1620 0.1620

scale-free 0.0810 0.0810 0.0810 0.1620 0.1620 0.1610
knn 0.0730 0.0750 0.0740 0.1460 0.1510 0.1480
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Figure 6: FDP and power plots with p = 20 and the nominal FDR level q = 0.2. The other setups
are the same as Figure 3.
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Figure 7: FDP and power plots with p = 30 and the nominal FDR level q = 0.2. The other setups
are the same as Figure 3.
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