calculate.V_mean.Rd
This function calculates the expected conditional variance term Var(Xj |X-j)
calculate.V_mean( S, algo = "lasso", cv.rule = "min", out = NULL, Xmodel = "gaussian", sigma_X.list_S = NULL, verbose = FALSE )
S | a list of selected variables. |
---|---|
algo | a fitting algorithm (default: "lasso"). |
cv.rule | indicates which rule should be used for the predict function, either "min" (the usual rule) or "1se" (the one-standard- error rule); default: "min"). See the glmnet help files for details. |
out | the fitted model from train.fun. |
Xmodel | model of the covaraites (default: "gaussian"). |
sigma_X.list_S | a list of length |S|, with each element being the variance of the conditional distribution. |
verbose | whether to show intermediate progress (default: FALSE). |
A vector of length |S|, whose element is the expected conditional variance term Var(Xj |X-j).
Zhang L, Janson L (2020). “Floodgate: Inference for Model-Free Variable Importance.” arXiv preprint arXiv:2007.01283.
Other methods:
calulate.mu_Xk()
,
fg.inference.binary()
,
fg.inference()
,
fit.mu()
,
floodgate.binary()
,
floodgate()
,
inference_general()